Mister Exam

Other calculators


x^4+arctg(2x)-ln(x^2)

Derivative of x^4+arctg(2x)-ln(x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 4                  / 2\
x  + atan(2*x) - log\x /
$$x^{4} - \log{\left(x^{2} \right)} + \operatorname{atan}{\left(2 x \right)}$$
d / 4                  / 2\\
--\x  + atan(2*x) - log\x //
dx                          
$$\frac{d}{d x} \left(x^{4} - \log{\left(x^{2} \right)} + \operatorname{atan}{\left(2 x \right)}\right)$$
The graph
The first derivative [src]
  2      2          3
- - + -------- + 4*x 
  x          2       
      1 + 4*x        
$$4 x^{3} + \frac{2}{4 x^{2} + 1} - \frac{2}{x}$$
The second derivative [src]
  /1       2       8*x    \
2*|-- + 6*x  - -----------|
  | 2                    2|
  |x           /       2\ |
  \            \1 + 4*x / /
$$2 \cdot \left(6 x^{2} - \frac{8 x}{\left(4 x^{2} + 1\right)^{2}} + \frac{1}{x^{2}}\right)$$
The third derivative [src]
  /                                  2   \
  |  1         4                 64*x    |
4*|- -- - ----------- + 6*x + -----------|
  |   3             2                   3|
  |  x    /       2\          /       2\ |
  \       \1 + 4*x /          \1 + 4*x / /
$$4 \cdot \left(6 x + \frac{64 x^{2}}{\left(4 x^{2} + 1\right)^{3}} - \frac{4}{\left(4 x^{2} + 1\right)^{2}} - \frac{1}{x^{3}}\right)$$
The graph
Derivative of x^4+arctg(2x)-ln(x^2)