Mister Exam

Other calculators


x^4/log(x)

Derivative of x^4/log(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   4  
  x   
------
log(x)
$$\frac{x^{4}}{\log{\left(x \right)}}$$
  /   4  \
d |  x   |
--|------|
dx\log(x)/
$$\frac{d}{d x} \frac{x^{4}}{\log{\left(x \right)}}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Apply the power rule: goes to

    To find :

    1. The derivative of is .

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
      3         3 
     x       4*x  
- ------- + ------
     2      log(x)
  log (x)         
$$\frac{4 x^{3}}{\log{\left(x \right)}} - \frac{x^{3}}{\log{\left(x \right)}^{2}}$$
The second derivative [src]
   /                    2   \
   |              1 + ------|
 2 |       8          log(x)|
x *|12 - ------ + ----------|
   \     log(x)     log(x)  /
-----------------------------
            log(x)           
$$\frac{x^{2} \left(\frac{1 + \frac{2}{\log{\left(x \right)}}}{\log{\left(x \right)}} + 12 - \frac{8}{\log{\left(x \right)}}\right)}{\log{\left(x \right)}}$$
The third derivative [src]
    /                    3         3                    \
    |              1 + ------ + -------     /      2   \|
    |                  log(x)      2      6*|1 + ------||
    |       18                  log (x)     \    log(x)/|
2*x*|12 - ------ - -------------------- + --------------|
    \     log(x)          log(x)              log(x)    /
---------------------------------------------------------
                          log(x)                         
$$\frac{2 x \left(\frac{6 \cdot \left(1 + \frac{2}{\log{\left(x \right)}}\right)}{\log{\left(x \right)}} - \frac{1 + \frac{3}{\log{\left(x \right)}} + \frac{3}{\log{\left(x \right)}^{2}}}{\log{\left(x \right)}} + 12 - \frac{18}{\log{\left(x \right)}}\right)}{\log{\left(x \right)}}$$
The graph
Derivative of x^4/log(x)