Mister Exam

Other calculators


log(x^2-6x+10)

Derivative of log(x^2-6x+10)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   / 2           \
log\x  - 6*x + 10/
$$\log{\left(\left(x^{2} - 6 x\right) + 10 \right)}$$
log(x^2 - 6*x + 10)
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      2. The derivative of the constant is zero.

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
   -6 + 2*x  
-------------
 2           
x  - 6*x + 10
$$\frac{2 x - 6}{\left(x^{2} - 6 x\right) + 10}$$
The second derivative [src]
  /               2 \
  |     2*(-3 + x)  |
2*|1 - -------------|
  |          2      |
  \    10 + x  - 6*x/
---------------------
          2          
    10 + x  - 6*x    
$$\frac{2 \left(- \frac{2 \left(x - 3\right)^{2}}{x^{2} - 6 x + 10} + 1\right)}{x^{2} - 6 x + 10}$$
The third derivative [src]
           /                2 \
           |      4*(-3 + x)  |
4*(-3 + x)*|-3 + -------------|
           |           2      |
           \     10 + x  - 6*x/
-------------------------------
                       2       
        /      2      \        
        \10 + x  - 6*x/        
$$\frac{4 \left(x - 3\right) \left(\frac{4 \left(x - 3\right)^{2}}{x^{2} - 6 x + 10} - 3\right)}{\left(x^{2} - 6 x + 10\right)^{2}}$$
The graph
Derivative of log(x^2-6x+10)