Mister Exam

Derivative of (x^⅓)ln²x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
3 ___    2   
\/ x *log (x)
$$\sqrt[3]{x} \log{\left(x \right)}^{2}$$
x^(1/3)*log(x)^2
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of is .

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
              2   
2*log(x)   log (x)
-------- + -------
   2/3         2/3
  x         3*x   
$$\frac{\log{\left(x \right)}^{2}}{3 x^{\frac{2}{3}}} + \frac{2 \log{\left(x \right)}}{x^{\frac{2}{3}}}$$
The second derivative [src]
  /                2   \
  |    log(x)   log (x)|
2*|1 - ------ - -------|
  \      3         9   /
------------------------
           5/3          
          x             
$$\frac{2 \left(- \frac{\log{\left(x \right)}^{2}}{9} - \frac{\log{\left(x \right)}}{3} + 1\right)}{x^{\frac{5}{3}}}$$
The third derivative [src]
  /                   2   \
  |     log(x)   5*log (x)|
2*|-2 + ------ + ---------|
  \       3          27   /
---------------------------
             8/3           
            x              
$$\frac{2 \left(\frac{5 \log{\left(x \right)}^{2}}{27} + \frac{\log{\left(x \right)}}{3} - 2\right)}{x^{\frac{8}{3}}}$$