Detail solution
-
Apply the product rule:
; to find :
-
Apply the power rule: goes to
; to find :
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of is .
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
The first derivative
[src]
2
2*log(x) log (x)
-------- + -------
2/3 2/3
x 3*x
$$\frac{\log{\left(x \right)}^{2}}{3 x^{\frac{2}{3}}} + \frac{2 \log{\left(x \right)}}{x^{\frac{2}{3}}}$$
The second derivative
[src]
/ 2 \
| log(x) log (x)|
2*|1 - ------ - -------|
\ 3 9 /
------------------------
5/3
x
$$\frac{2 \left(- \frac{\log{\left(x \right)}^{2}}{9} - \frac{\log{\left(x \right)}}{3} + 1\right)}{x^{\frac{5}{3}}}$$
The third derivative
[src]
/ 2 \
| log(x) 5*log (x)|
2*|-2 + ------ + ---------|
\ 3 27 /
---------------------------
8/3
x
$$\frac{2 \left(\frac{5 \log{\left(x \right)}^{2}}{27} + \frac{\log{\left(x \right)}}{3} - 2\right)}{x^{\frac{8}{3}}}$$