Mister Exam

Derivative of xsqrt(x+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    _______
x*\/ x + 1 
xx+1x \sqrt{x + 1}
x*sqrt(x + 1)
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=xf{\left(x \right)} = x; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the power rule: xx goes to 11

    g(x)=x+1g{\left(x \right)} = \sqrt{x + 1}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=x+1u = x + 1.

    2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

    3. Then, apply the chain rule. Multiply by ddx(x+1)\frac{d}{d x} \left(x + 1\right):

      1. Differentiate x+1x + 1 term by term:

        1. Apply the power rule: xx goes to 11

        2. The derivative of the constant 11 is zero.

        The result is: 11

      The result of the chain rule is:

      12x+1\frac{1}{2 \sqrt{x + 1}}

    The result is: x2x+1+x+1\frac{x}{2 \sqrt{x + 1}} + \sqrt{x + 1}

  2. Now simplify:

    3x+22x+1\frac{3 x + 2}{2 \sqrt{x + 1}}


The answer is:

3x+22x+1\frac{3 x + 2}{2 \sqrt{x + 1}}

The graph
02468-8-6-4-2-1010-5050
The first derivative [src]
  _______        x     
\/ x + 1  + -----------
                _______
            2*\/ x + 1 
x2x+1+x+1\frac{x}{2 \sqrt{x + 1}} + \sqrt{x + 1}
The second derivative [src]
        x    
1 - ---------
    4*(1 + x)
-------------
    _______  
  \/ 1 + x   
x4(x+1)+1x+1\frac{- \frac{x}{4 \left(x + 1\right)} + 1}{\sqrt{x + 1}}
The third derivative [src]
  /       x  \
3*|-2 + -----|
  \     1 + x/
--------------
          3/2 
 8*(1 + x)    
3(xx+12)8(x+1)32\frac{3 \left(\frac{x}{x + 1} - 2\right)}{8 \left(x + 1\right)^{\frac{3}{2}}}
The graph
Derivative of xsqrt(x+1)