Mister Exam

Other calculators

Derivative of -4/3x*sqrt(x)+12x+15

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
-4*x   ___            
----*\/ x  + 12*x + 15
 3                    
(x(4x3)+12x)+15\left(\sqrt{x} \left(- \frac{4 x}{3}\right) + 12 x\right) + 15
(-4*x/3)*sqrt(x) + 12*x + 15
Detail solution
  1. Differentiate (x(4x3)+12x)+15\left(\sqrt{x} \left(- \frac{4 x}{3}\right) + 12 x\right) + 15 term by term:

    1. Differentiate x(4x3)+12x\sqrt{x} \left(- \frac{4 x}{3}\right) + 12 x term by term:

      1. Apply the quotient rule, which is:

        ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

        f(x)=4x32f{\left(x \right)} = - 4 x^{\frac{3}{2}} and g(x)=3g{\left(x \right)} = 3.

        To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: x32x^{\frac{3}{2}} goes to 3x2\frac{3 \sqrt{x}}{2}

          So, the result is: 6x- 6 \sqrt{x}

        To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

        1. The derivative of the constant 33 is zero.

        Now plug in to the quotient rule:

        2x- 2 \sqrt{x}

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 1212

      The result is: 122x12 - 2 \sqrt{x}

    2. The derivative of the constant 1515 is zero.

    The result is: 122x12 - 2 \sqrt{x}


The answer is:

122x12 - 2 \sqrt{x}

The graph
02468-8-6-4-2-10100100
The first derivative [src]
         ___
12 - 2*\/ x 
122x12 - 2 \sqrt{x}
The second derivative [src]
 -1  
-----
  ___
\/ x 
1x- \frac{1}{\sqrt{x}}
The third derivative [src]
  1   
------
   3/2
2*x   
12x32\frac{1}{2 x^{\frac{3}{2}}}