Mister Exam

Other calculators

Derivative of (x+2^(1/2))^(exp(1/(x-4)))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
           /   1  \
           | -----|
           | x - 4|
           \e     /
/      ___\        
\x + \/ 2 /        
$$\left(x + \sqrt{2}\right)^{e^{\frac{1}{x - 4}}}$$
(x + sqrt(2))^exp(1/(x - 4))
Detail solution
  1. Don't know the steps in finding this derivative.

    But the derivative is

  2. Now simplify:


The answer is:

The first derivative [src]
           /   1  \                                    
           | -----| /     1         1                 \
           | x - 4| |   -----     -----               |
           \e     / |   x - 4     x - 4    /      ___\|
/      ___\         |  e         e     *log\x + \/ 2 /|
\x + \/ 2 /        *|--------- - ---------------------|
                    |      ___                 2      |
                    \x + \/ 2           (x - 4)       /
$$\left(x + \sqrt{2}\right)^{e^{\frac{1}{x - 4}}} \left(\frac{e^{\frac{1}{x - 4}}}{x + \sqrt{2}} - \frac{e^{\frac{1}{x - 4}} \log{\left(x + \sqrt{2} \right)}}{\left(x - 4\right)^{2}}\right)$$
The second derivative [src]
           /   1   \                                                                                                                             
           | ------|                                                                                                                             
           | -4 + x| /                                                              2    1                                              \    1   
           \e      / |                    /      ___\   /               /      ___\\   ------                                /      ___\|  ------
/      ___\          |       1         log\x + \/ 2 /   |    1       log\x + \/ 2 /|   -4 + x             2             2*log\x + \/ 2 /|  -4 + x
\x + \/ 2 /         *|- ------------ + -------------- + |--------- - --------------| *e       - --------------------- + ----------------|*e      
                     |             2             4      |      ___             2   |                    2 /      ___\              3    |        
                     |  /      ___\      (-4 + x)       \x + \/ 2      (-4 + x)    /            (-4 + x) *\x + \/ 2 /      (-4 + x)     |        
                     \  \x + \/ 2 /                                                                                                     /        
$$\left(x + \sqrt{2}\right)^{e^{\frac{1}{x - 4}}} \left(\left(\frac{1}{x + \sqrt{2}} - \frac{\log{\left(x + \sqrt{2} \right)}}{\left(x - 4\right)^{2}}\right)^{2} e^{\frac{1}{x - 4}} - \frac{1}{\left(x + \sqrt{2}\right)^{2}} - \frac{2}{\left(x - 4\right)^{2} \left(x + \sqrt{2}\right)} + \frac{2 \log{\left(x + \sqrt{2} \right)}}{\left(x - 4\right)^{3}} + \frac{\log{\left(x + \sqrt{2} \right)}}{\left(x - 4\right)^{4}}\right) e^{\frac{1}{x - 4}}$$
The third derivative [src]
           /   1   \                                                                                                                                                                                                                                                                                                                   
           | ------|                                                                                                                                                                                                                                                                                                                   
           | -4 + x| /                                           3    2                                                                                                                                                                                                                                                   1   \    1   
           \e      / |               /               /      ___\\   ------      /      ___\        /      ___\        /      ___\                                                                              /               /      ___\\ /                  /      ___\        /      ___\                        \  ------|  ------
/      ___\          |     2         |    1       log\x + \/ 2 /|   -4 + x   log\x + \/ 2 /   6*log\x + \/ 2 /   6*log\x + \/ 2 /             3                       3                        6               |    1       log\x + \/ 2 /| |     1         log\x + \/ 2 /   2*log\x + \/ 2 /             2          |  -4 + x|  -4 + x
\x + \/ 2 /         *|------------ + |--------- - --------------| *e       - -------------- - ---------------- - ---------------- + --------------------- + ---------------------- + --------------------- - 3*|--------- - --------------|*|------------ - -------------- - ---------------- + ---------------------|*e      |*e      
                     |           3   |      ___             2   |                      6                 5                  4               4 /      ___\                        2           3 /      ___\     |      ___             2   | |           2             4                 3               2 /      ___\|        |        
                     |/      ___\    \x + \/ 2      (-4 + x)    /              (-4 + x)          (-4 + x)           (-4 + x)        (-4 + x) *\x + \/ 2 /           2 /      ___\    (-4 + x) *\x + \/ 2 /     \x + \/ 2      (-4 + x)    / |/      ___\      (-4 + x)          (-4 + x)        (-4 + x) *\x + \/ 2 /|        |        
                     \\x + \/ 2 /                                                                                                                           (-4 + x) *\x + \/ 2 /                                                           \\x + \/ 2 /                                                             /        /        
$$\left(x + \sqrt{2}\right)^{e^{\frac{1}{x - 4}}} \left(\left(\frac{1}{x + \sqrt{2}} - \frac{\log{\left(x + \sqrt{2} \right)}}{\left(x - 4\right)^{2}}\right)^{3} e^{\frac{2}{x - 4}} - 3 \left(\frac{1}{x + \sqrt{2}} - \frac{\log{\left(x + \sqrt{2} \right)}}{\left(x - 4\right)^{2}}\right) \left(\frac{1}{\left(x + \sqrt{2}\right)^{2}} + \frac{2}{\left(x - 4\right)^{2} \left(x + \sqrt{2}\right)} - \frac{2 \log{\left(x + \sqrt{2} \right)}}{\left(x - 4\right)^{3}} - \frac{\log{\left(x + \sqrt{2} \right)}}{\left(x - 4\right)^{4}}\right) e^{\frac{1}{x - 4}} + \frac{2}{\left(x + \sqrt{2}\right)^{3}} + \frac{3}{\left(x - 4\right)^{2} \left(x + \sqrt{2}\right)^{2}} + \frac{6}{\left(x - 4\right)^{3} \left(x + \sqrt{2}\right)} - \frac{6 \log{\left(x + \sqrt{2} \right)}}{\left(x - 4\right)^{4}} + \frac{3}{\left(x - 4\right)^{4} \left(x + \sqrt{2}\right)} - \frac{6 \log{\left(x + \sqrt{2} \right)}}{\left(x - 4\right)^{5}} - \frac{\log{\left(x + \sqrt{2} \right)}}{\left(x - 4\right)^{6}}\right) e^{\frac{1}{x - 4}}$$