/ 1 \
| -----|
| x - 4|
\e /
/ ___\
\x + \/ 2 /
(x + sqrt(2))^exp(1/(x - 4))
Don't know the steps in finding this derivative.
But the derivative is
Now simplify:
The answer is:
/ 1 \
| -----| / 1 1 \
| x - 4| | ----- ----- |
\e / | x - 4 x - 4 / ___\|
/ ___\ | e e *log\x + \/ 2 /|
\x + \/ 2 / *|--------- - ---------------------|
| ___ 2 |
\x + \/ 2 (x - 4) /
/ 1 \
| ------|
| -4 + x| / 2 1 \ 1
\e / | / ___\ / / ___\\ ------ / ___\| ------
/ ___\ | 1 log\x + \/ 2 / | 1 log\x + \/ 2 /| -4 + x 2 2*log\x + \/ 2 /| -4 + x
\x + \/ 2 / *|- ------------ + -------------- + |--------- - --------------| *e - --------------------- + ----------------|*e
| 2 4 | ___ 2 | 2 / ___\ 3 |
| / ___\ (-4 + x) \x + \/ 2 (-4 + x) / (-4 + x) *\x + \/ 2 / (-4 + x) |
\ \x + \/ 2 / /
/ 1 \
| ------|
| -4 + x| / 3 2 1 \ 1
\e / | / / ___\\ ------ / ___\ / ___\ / ___\ / / ___\\ / / ___\ / ___\ \ ------| ------
/ ___\ | 2 | 1 log\x + \/ 2 /| -4 + x log\x + \/ 2 / 6*log\x + \/ 2 / 6*log\x + \/ 2 / 3 3 6 | 1 log\x + \/ 2 /| | 1 log\x + \/ 2 / 2*log\x + \/ 2 / 2 | -4 + x| -4 + x
\x + \/ 2 / *|------------ + |--------- - --------------| *e - -------------- - ---------------- - ---------------- + --------------------- + ---------------------- + --------------------- - 3*|--------- - --------------|*|------------ - -------------- - ---------------- + ---------------------|*e |*e
| 3 | ___ 2 | 6 5 4 4 / ___\ 2 3 / ___\ | ___ 2 | | 2 4 3 2 / ___\| |
|/ ___\ \x + \/ 2 (-4 + x) / (-4 + x) (-4 + x) (-4 + x) (-4 + x) *\x + \/ 2 / 2 / ___\ (-4 + x) *\x + \/ 2 / \x + \/ 2 (-4 + x) / |/ ___\ (-4 + x) (-4 + x) (-4 + x) *\x + \/ 2 /| |
\\x + \/ 2 / (-4 + x) *\x + \/ 2 / \\x + \/ 2 / / /