Mister Exam

Other calculators


(x+2)^5(x-3)^4

Derivative of (x+2)^5(x-3)^4

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
       5        4
(x + 2) *(x - 3) 
(x3)4(x+2)5\left(x - 3\right)^{4} \left(x + 2\right)^{5}
(x + 2)^5*(x - 3)^4
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=(x+2)5f{\left(x \right)} = \left(x + 2\right)^{5}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Let u=x+2u = x + 2.

    2. Apply the power rule: u5u^{5} goes to 5u45 u^{4}

    3. Then, apply the chain rule. Multiply by ddx(x+2)\frac{d}{d x} \left(x + 2\right):

      1. Differentiate x+2x + 2 term by term:

        1. Apply the power rule: xx goes to 11

        2. The derivative of the constant 22 is zero.

        The result is: 11

      The result of the chain rule is:

      5(x+2)45 \left(x + 2\right)^{4}

    g(x)=(x3)4g{\left(x \right)} = \left(x - 3\right)^{4}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=x3u = x - 3.

    2. Apply the power rule: u4u^{4} goes to 4u34 u^{3}

    3. Then, apply the chain rule. Multiply by ddx(x3)\frac{d}{d x} \left(x - 3\right):

      1. Differentiate x3x - 3 term by term:

        1. Apply the power rule: xx goes to 11

        2. The derivative of the constant 3-3 is zero.

        The result is: 11

      The result of the chain rule is:

      4(x3)34 \left(x - 3\right)^{3}

    The result is: 5(x3)4(x+2)4+4(x3)3(x+2)55 \left(x - 3\right)^{4} \left(x + 2\right)^{4} + 4 \left(x - 3\right)^{3} \left(x + 2\right)^{5}

  2. Now simplify:

    (x3)3(x+2)4(9x7)\left(x - 3\right)^{3} \left(x + 2\right)^{4} \left(9 x - 7\right)


The answer is:

(x3)3(x+2)4(9x7)\left(x - 3\right)^{3} \left(x + 2\right)^{4} \left(9 x - 7\right)

The graph
02468-8-6-4-2-1010-20000000002000000000
The first derivative [src]
         3        5            4        4
4*(x - 3) *(x + 2)  + 5*(x - 3) *(x + 2) 
5(x3)4(x+2)4+4(x3)3(x+2)55 \left(x - 3\right)^{4} \left(x + 2\right)^{4} + 4 \left(x - 3\right)^{3} \left(x + 2\right)^{5}
The second derivative [src]
          2        3 /         2             2                      \
4*(-3 + x) *(2 + x) *\3*(2 + x)  + 5*(-3 + x)  + 10*(-3 + x)*(2 + x)/
4(x3)2(x+2)3(5(x3)2+10(x3)(x+2)+3(x+2)2)4 \left(x - 3\right)^{2} \left(x + 2\right)^{3} \left(5 \left(x - 3\right)^{2} + 10 \left(x - 3\right) \left(x + 2\right) + 3 \left(x + 2\right)^{2}\right)
The third derivative [src]
          2          /         3             3             2                       2        \
12*(2 + x) *(-3 + x)*\2*(2 + x)  + 5*(-3 + x)  + 15*(2 + x) *(-3 + x) + 20*(-3 + x) *(2 + x)/
12(x3)(x+2)2(5(x3)3+20(x3)2(x+2)+15(x3)(x+2)2+2(x+2)3)12 \left(x - 3\right) \left(x + 2\right)^{2} \left(5 \left(x - 3\right)^{3} + 20 \left(x - 3\right)^{2} \left(x + 2\right) + 15 \left(x - 3\right) \left(x + 2\right)^{2} + 2 \left(x + 2\right)^{3}\right)
The graph
Derivative of (x+2)^5(x-3)^4