Mister Exam

Other calculators


(x+2)^5(x-3)^4

Derivative of (x+2)^5(x-3)^4

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
       5        4
(x + 2) *(x - 3) 
$$\left(x - 3\right)^{4} \left(x + 2\right)^{5}$$
(x + 2)^5*(x - 3)^4
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
         3        5            4        4
4*(x - 3) *(x + 2)  + 5*(x - 3) *(x + 2) 
$$5 \left(x - 3\right)^{4} \left(x + 2\right)^{4} + 4 \left(x - 3\right)^{3} \left(x + 2\right)^{5}$$
The second derivative [src]
          2        3 /         2             2                      \
4*(-3 + x) *(2 + x) *\3*(2 + x)  + 5*(-3 + x)  + 10*(-3 + x)*(2 + x)/
$$4 \left(x - 3\right)^{2} \left(x + 2\right)^{3} \left(5 \left(x - 3\right)^{2} + 10 \left(x - 3\right) \left(x + 2\right) + 3 \left(x + 2\right)^{2}\right)$$
The third derivative [src]
          2          /         3             3             2                       2        \
12*(2 + x) *(-3 + x)*\2*(2 + x)  + 5*(-3 + x)  + 15*(2 + x) *(-3 + x) + 20*(-3 + x) *(2 + x)/
$$12 \left(x - 3\right) \left(x + 2\right)^{2} \left(5 \left(x - 3\right)^{3} + 20 \left(x - 3\right)^{2} \left(x + 2\right) + 15 \left(x - 3\right) \left(x + 2\right)^{2} + 2 \left(x + 2\right)^{3}\right)$$
The graph
Derivative of (x+2)^5(x-3)^4