Mister Exam

Other calculators

Derivative of (x+2)/(x^2+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
x + 2 
------
 2    
x  + 1
$$\frac{x + 2}{x^{2} + 1}$$
(x + 2)/(x^2 + 1)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the power rule: goes to

      The result is:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the power rule: goes to

      The result is:

    Now plug in to the quotient rule:


The answer is:

The graph
The first derivative [src]
  1      2*x*(x + 2)
------ - -----------
 2                2 
x  + 1    / 2    \  
          \x  + 1/  
$$- \frac{2 x \left(x + 2\right)}{\left(x^{2} + 1\right)^{2}} + \frac{1}{x^{2} + 1}$$
The second derivative [src]
  /       /         2 \        \
  |       |      4*x  |        |
2*|-2*x + |-1 + ------|*(2 + x)|
  |       |          2|        |
  \       \     1 + x /        /
--------------------------------
                   2            
           /     2\             
           \1 + x /             
$$\frac{2 \left(- 2 x + \left(x + 2\right) \left(\frac{4 x^{2}}{x^{2} + 1} - 1\right)\right)}{\left(x^{2} + 1\right)^{2}}$$
The third derivative [src]
  /                  /         2 \        \
  |                  |      2*x  |        |
  |              4*x*|-1 + ------|*(2 + x)|
  |         2        |          2|        |
  |      4*x         \     1 + x /        |
6*|-1 + ------ - -------------------------|
  |          2                  2         |
  \     1 + x              1 + x          /
-------------------------------------------
                         2                 
                 /     2\                  
                 \1 + x /                  
$$\frac{6 \left(\frac{4 x^{2}}{x^{2} + 1} - \frac{4 x \left(x + 2\right) \left(\frac{2 x^{2}}{x^{2} + 1} - 1\right)}{x^{2} + 1} - 1\right)}{\left(x^{2} + 1\right)^{2}}$$