Mister Exam

Derivative of (x+3)e^-x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
         -x
(x + 3)*e  
(x+3)ex\left(x + 3\right) e^{- x}
d /         -x\
--\(x + 3)*e  /
dx             
ddx(x+3)ex\frac{d}{d x} \left(x + 3\right) e^{- x}
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=x+3f{\left(x \right)} = x + 3 and g(x)=exg{\left(x \right)} = e^{x}.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Differentiate x+3x + 3 term by term:

      1. The derivative of the constant 33 is zero.

      2. Apply the power rule: xx goes to 11

      The result is: 11

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. The derivative of exe^{x} is itself.

    Now plug in to the quotient rule:

    ((x+3)ex+ex)e2x\left(- \left(x + 3\right) e^{x} + e^{x}\right) e^{- 2 x}

  2. Now simplify:

    (x2)ex\left(- x - 2\right) e^{- x}


The answer is:

(x2)ex\left(- x - 2\right) e^{- x}

The graph
02468-8-6-4-2-1010-250000250000
The first derivative [src]
 -x            -x
e   - (x + 3)*e  
(x+3)ex+ex- \left(x + 3\right) e^{- x} + e^{- x}
The second derivative [src]
         -x
(1 + x)*e  
(x+1)ex\left(x + 1\right) e^{- x}
The third derivative [src]
    -x
-x*e  
xex- x e^{- x}
The graph
Derivative of (x+3)e^-x