Mister Exam

Other calculators


5xe^(5x)*x+e^(5x)

Derivative of 5xe^(5x)*x+e^(5x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     5*x      5*x
5*x*e   *x + e   
5xxe5x+e5x5 x x e^{5 x} + e^{5 x}
d /     5*x      5*x\
--\5*x*e   *x + e   /
dx                   
ddx(5xxe5x+e5x)\frac{d}{d x} \left(5 x x e^{5 x} + e^{5 x}\right)
Detail solution
  1. Differentiate 5xxe5x+e5x5 x x e^{5 x} + e^{5 x} term by term:

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the product rule:

        ddxf(x)g(x)h(x)=f(x)g(x)ddxh(x)+f(x)h(x)ddxg(x)+g(x)h(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} h{\left(x \right)} = f{\left(x \right)} g{\left(x \right)} \frac{d}{d x} h{\left(x \right)} + f{\left(x \right)} h{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} h{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

        f(x)=xf{\left(x \right)} = x; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

        1. Apply the power rule: xx goes to 11

        g(x)=xg{\left(x \right)} = x; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

        1. Apply the power rule: xx goes to 11

        h(x)=e5xh{\left(x \right)} = e^{5 x}; to find ddxh(x)\frac{d}{d x} h{\left(x \right)}:

        1. Let u=5xu = 5 x.

        2. The derivative of eue^{u} is itself.

        3. Then, apply the chain rule. Multiply by ddx5x\frac{d}{d x} 5 x:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 55

          The result of the chain rule is:

          5e5x5 e^{5 x}

        The result is: 5x2e5x+2xe5x5 x^{2} e^{5 x} + 2 x e^{5 x}

      So, the result is: 25x2e5x+10xe5x25 x^{2} e^{5 x} + 10 x e^{5 x}

    2. Let u=5xu = 5 x.

    3. The derivative of eue^{u} is itself.

    4. Then, apply the chain rule. Multiply by ddx5x\frac{d}{d x} 5 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 55

      The result of the chain rule is:

      5e5x5 e^{5 x}

    The result is: 25x2e5x+10xe5x+5e5x25 x^{2} e^{5 x} + 10 x e^{5 x} + 5 e^{5 x}

  2. Now simplify:

    (25x2+10x+5)e5x\left(25 x^{2} + 10 x + 5\right) e^{5 x}


The answer is:

(25x2+10x+5)e5x\left(25 x^{2} + 10 x + 5\right) e^{5 x}

The graph
02468-8-6-4-2-101002e25
The first derivative [src]
   5*x         5*x       2  5*x
5*e    + 10*x*e    + 25*x *e   
25x2e5x+10xe5x+5e5x25 x^{2} e^{5 x} + 10 x e^{5 x} + 5 e^{5 x}
The second derivative [src]
  /               2\  5*x
5*\7 + 20*x + 25*x /*e   
5(25x2+20x+7)e5x5 \cdot \left(25 x^{2} + 20 x + 7\right) e^{5 x}
The third derivative [src]
   /         2       \  5*x
25*\11 + 25*x  + 30*x/*e   
25(25x2+30x+11)e5x25 \cdot \left(25 x^{2} + 30 x + 11\right) e^{5 x}
The graph
Derivative of 5xe^(5x)*x+e^(5x)