Mister Exam

Other calculators

Derivative of x*sqrt(x+(1/x)-2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
      ___________
     /     1     
x*  /  x + - - 2 
  \/       x     
$$x \sqrt{\left(x + \frac{1}{x}\right) - 2}$$
x*sqrt(x + 1/x - 2)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. Differentiate term by term:

          1. Apply the power rule: goes to

          2. Apply the power rule: goes to

          The result is:

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                      /1    1  \ 
                    x*|- - ----| 
    ___________       |2      2| 
   /     1            \    2*x / 
  /  x + - - 2  + ---------------
\/       x            ___________
                     /     1     
                    /  x + - - 2 
                  \/       x     
$$\frac{x \left(\frac{1}{2} - \frac{1}{2 x^{2}}\right)}{\sqrt{\left(x + \frac{1}{x}\right) - 2}} + \sqrt{\left(x + \frac{1}{x}\right) - 2}$$
The second derivative [src]
           /               2 \
           |       /    1 \  |
           |       |1 - --|  |
           |       |     2|  |
           |  4    \    x /  |
         x*|- -- + ----------|
           |   3            1|
           |  x    -2 + x + -|
    1      \                x/
1 - -- - ---------------------
     2             4          
    x                         
------------------------------
           ____________       
          /          1        
         /  -2 + x + -        
       \/            x        
$$\frac{- \frac{x \left(\frac{\left(1 - \frac{1}{x^{2}}\right)^{2}}{x - 2 + \frac{1}{x}} - \frac{4}{x^{3}}\right)}{4} + 1 - \frac{1}{x^{2}}}{\sqrt{x - 2 + \frac{1}{x}}}$$
The third derivative [src]
   /                          /               3                    \\
   |                          |       /    1 \           /    1 \  ||
   |                          |       |1 - --|         4*|1 - --|  ||
   |                          |       |     2|           |     2|  ||
   |                          |8      \    x /           \    x /  ||
   |                 2      x*|-- - ------------- + ---------------||
   |         /    1 \         | 4               2    3 /         1\||
   |         |1 - --|         |x    /         1\    x *|-2 + x + -|||
   |         |     2|         |     |-2 + x + -|       \         x/||
   |  1      \    x /         \     \         x/                   /|
-3*|- -- + -------------- + ----------------------------------------|
   |   3     /         1\                      8                    |
   |  x    4*|-2 + x + -|                                           |
   \         \         x/                                           /
---------------------------------------------------------------------
                               ____________                          
                              /          1                           
                             /  -2 + x + -                           
                           \/            x                           
$$- \frac{3 \left(\frac{x \left(- \frac{\left(1 - \frac{1}{x^{2}}\right)^{3}}{\left(x - 2 + \frac{1}{x}\right)^{2}} + \frac{4 \left(1 - \frac{1}{x^{2}}\right)}{x^{3} \left(x - 2 + \frac{1}{x}\right)} + \frac{8}{x^{4}}\right)}{8} + \frac{\left(1 - \frac{1}{x^{2}}\right)^{2}}{4 \left(x - 2 + \frac{1}{x}\right)} - \frac{1}{x^{3}}\right)}{\sqrt{x - 2 + \frac{1}{x}}}$$