Mister Exam

Other calculators

Derivative of x*sqrt^4(x+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
           4
    _______ 
x*\/ x + 1  
x(x+1)4x \left(\sqrt{x + 1}\right)^{4}
x*(sqrt(x + 1))^4
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=xf{\left(x \right)} = x; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the power rule: xx goes to 11

    g(x)=(x+1)4g{\left(x \right)} = \left(\sqrt{x + 1}\right)^{4}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=x+1u = \sqrt{x + 1}.

    2. Apply the power rule: u4u^{4} goes to 4u34 u^{3}

    3. Then, apply the chain rule. Multiply by ddxx+1\frac{d}{d x} \sqrt{x + 1}:

      1. Let u=x+1u = x + 1.

      2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

      3. Then, apply the chain rule. Multiply by ddx(x+1)\frac{d}{d x} \left(x + 1\right):

        1. Differentiate x+1x + 1 term by term:

          1. Apply the power rule: xx goes to 11

          2. The derivative of the constant 11 is zero.

          The result is: 11

        The result of the chain rule is:

        12x+1\frac{1}{2 \sqrt{x + 1}}

      The result of the chain rule is:

      2x+22 x + 2

    The result is: x(2x+2)+(x+1)4x \left(2 x + 2\right) + \left(\sqrt{x + 1}\right)^{4}

  2. Now simplify:

    (x+1)(3x+1)\left(x + 1\right) \left(3 x + 1\right)


The answer is:

(x+1)(3x+1)\left(x + 1\right) \left(3 x + 1\right)

The graph
02468-8-6-4-2-1010-20002000
The first derivative [src]
         4              
  _______               
\/ x + 1   + 2*x*(x + 1)
2x(x+1)+(x+1)42 x \left(x + 1\right) + \left(\sqrt{x + 1}\right)^{4}
The second derivative [src]
2*(2 + 3*x)
2(3x+2)2 \left(3 x + 2\right)
The third derivative [src]
6
66