Mister Exam

Other calculators


x*sqrt(1+x^2)

Derivative of x*sqrt(1+x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     ________
    /      2 
x*\/  1 + x  
$$x \sqrt{x^{2} + 1}$$
  /     ________\
d |    /      2 |
--\x*\/  1 + x  /
dx               
$$\frac{d}{d x} x \sqrt{x^{2} + 1}$$
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. Apply the power rule: goes to

        The result is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   ________         2    
  /      2         x     
\/  1 + x   + -----------
                 ________
                /      2 
              \/  1 + x  
$$\frac{x^{2}}{\sqrt{x^{2} + 1}} + \sqrt{x^{2} + 1}$$
The second derivative [src]
  /       2  \
  |      x   |
x*|3 - ------|
  |         2|
  \    1 + x /
--------------
    ________  
   /      2   
 \/  1 + x    
$$\frac{x \left(- \frac{x^{2}}{x^{2} + 1} + 3\right)}{\sqrt{x^{2} + 1}}$$
The third derivative [src]
               2
  /        2  \ 
  |       x   | 
3*|-1 + ------| 
  |          2| 
  \     1 + x / 
----------------
     ________   
    /      2    
  \/  1 + x     
$$\frac{3 \left(\frac{x^{2}}{x^{2} + 1} - 1\right)^{2}}{\sqrt{x^{2} + 1}}$$
The graph
Derivative of x*sqrt(1+x^2)