Mister Exam

Other calculators


x*sin(pix/2)

Derivative of x*sin(pix/2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /pi*x\
x*sin|----|
     \ 2  /
$$x \sin{\left(\frac{\pi x}{2} \right)}$$
d /     /pi*x\\
--|x*sin|----||
dx\     \ 2  //
$$\frac{d}{d x} x \sin{\left(\frac{\pi x}{2} \right)}$$
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
        /pi*x\            
pi*x*cos|----|            
        \ 2  /      /pi*x\
-------------- + sin|----|
      2             \ 2  /
$$\frac{\pi x \cos{\left(\frac{\pi x}{2} \right)}}{2} + \sin{\left(\frac{\pi x}{2} \right)}$$
The second derivative [src]
   /          /pi*x\            \
   |  pi*x*sin|----|            |
   |          \ 2  /      /pi*x\|
pi*|- -------------- + cos|----||
   \        4             \ 2  //
$$\pi \left(- \frac{\pi x \sin{\left(\frac{\pi x}{2} \right)}}{4} + \cos{\left(\frac{\pi x}{2} \right)}\right)$$
The third derivative [src]
   2 /     /pi*x\           /pi*x\\ 
-pi *|6*sin|----| + pi*x*cos|----|| 
     \     \ 2  /           \ 2  // 
------------------------------------
                 8                  
$$- \frac{\pi^{2} \left(\pi x \cos{\left(\frac{\pi x}{2} \right)} + 6 \sin{\left(\frac{\pi x}{2} \right)}\right)}{8}$$
The graph
Derivative of x*sin(pix/2)