Mister Exam

Other calculators

Derivative of x*sin(pi*x/2^(-1))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /pi*x\
x*sin|----|
     \0.5 /
$$x \sin{\left(\frac{\pi x}{0.5} \right)}$$
x*sin((pi*x)/0.5)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        So, the result is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
            /pi*x\      /pi*x\
2.0*pi*x*cos|----| + sin|----|
            \0.5 /      \0.5 /
$$2.0 \pi x \cos{\left(\frac{\pi x}{0.5} \right)} + \sin{\left(\frac{\pi x}{0.5} \right)}$$
The second derivative [src]
4.0*pi*(-pi*x*sin(2*pi*x) + cos(2*pi*x))
$$4.0 \pi \left(- \pi x \sin{\left(2 \pi x \right)} + \cos{\left(2 \pi x \right)}\right)$$
The third derivative [src]
   2                                          
-pi *(12.0*sin(2*pi*x) + 8.0*pi*x*cos(2*pi*x))
$$- \pi^{2} \left(8.0 \pi x \cos{\left(2 \pi x \right)} + 12.0 \sin{\left(2 \pi x \right)}\right)$$