Mister Exam

Other calculators

Derivative of x*ln(1-2x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /       2\
x*log\1 - 2*x /
$$x \log{\left(1 - 2 x^{2} \right)}$$
x*log(1 - 2*x^2)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
       2                  
    4*x         /       2\
- -------- + log\1 - 2*x /
         2                
  1 - 2*x                 
$$- \frac{4 x^{2}}{1 - 2 x^{2}} + \log{\left(1 - 2 x^{2} \right)}$$
The second derivative [src]
    /          2  \
    |       4*x   |
4*x*|3 - ---------|
    |            2|
    \    -1 + 2*x /
-------------------
             2     
     -1 + 2*x      
$$\frac{4 x \left(- \frac{4 x^{2}}{2 x^{2} - 1} + 3\right)}{2 x^{2} - 1}$$
5-я производная [src]
   /                                     /          2            4    \\
   |                                   2 |      40*x         64*x     ||
   |                                8*x *|5 - --------- + ------------||
   |                                     |            2              2||
   |             4            2          |    -1 + 2*x    /        2\ ||
   |        160*x         80*x           \                \-1 + 2*x / /|
48*|-5 - ------------ + --------- + -----------------------------------|
   |                2           2                        2             |
   |     /        2\    -1 + 2*x                 -1 + 2*x              |
   \     \-1 + 2*x /                                                   /
------------------------------------------------------------------------
                                         2                              
                              /        2\                               
                              \-1 + 2*x /                               
$$\frac{48 \left(- \frac{160 x^{4}}{\left(2 x^{2} - 1\right)^{2}} + \frac{8 x^{2} \left(\frac{64 x^{4}}{\left(2 x^{2} - 1\right)^{2}} - \frac{40 x^{2}}{2 x^{2} - 1} + 5\right)}{2 x^{2} - 1} + \frac{80 x^{2}}{2 x^{2} - 1} - 5\right)}{\left(2 x^{2} - 1\right)^{2}}$$
The third derivative [src]
  /                     /           2  \\
  |                   2 |        8*x   ||
  |                4*x *|-3 + ---------||
  |          2          |             2||
  |      12*x           \     -1 + 2*x /|
4*|3 - --------- + ---------------------|
  |            2                 2      |
  \    -1 + 2*x          -1 + 2*x       /
-----------------------------------------
                        2                
                -1 + 2*x                 
$$\frac{4 \left(\frac{4 x^{2} \left(\frac{8 x^{2}}{2 x^{2} - 1} - 3\right)}{2 x^{2} - 1} - \frac{12 x^{2}}{2 x^{2} - 1} + 3\right)}{2 x^{2} - 1}$$