Mister Exam

Other calculators

Derivative of x*exp(x*(x/9))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     x
   x*-
     9
x*e   
$$x e^{x \frac{x}{9}}$$
x*exp(x*(x/9))
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Let .

    2. The derivative of is itself.

    3. Then, apply the chain rule. Multiply by :

      1. Apply the quotient rule, which is:

        and .

        To find :

        1. Apply the power rule: goes to

        To find :

        1. The derivative of the constant is zero.

        Now plug in to the quotient rule:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
             x      x
           x*-    x*-
  /x   x\    9      9
x*|- + -|*e    + e   
  \9   9/            
$$x \left(\frac{x}{9} + \frac{x}{9}\right) e^{x \frac{x}{9}} + e^{x \frac{x}{9}}$$
The second derivative [src]
                  2
                 x 
                 --
    /        2\  9 
2*x*\27 + 2*x /*e  
-------------------
         81        
$$\frac{2 x \left(2 x^{2} + 27\right) e^{\frac{x^{2}}{9}}}{81}$$
The third derivative [src]
                                     2
                                    x 
                                    --
  /          2      2 /        2\\  9 
2*\243 + 54*x  + 2*x *\27 + 2*x //*e  
--------------------------------------
                 729                  
$$\frac{2 \left(2 x^{2} \left(2 x^{2} + 27\right) + 54 x^{2} + 243\right) e^{\frac{x^{2}}{9}}}{729}$$