Mister Exam

Other calculators

Derivative of x*exp(x*(x/9))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     x
   x*-
     9
x*e   
xexx9x e^{x \frac{x}{9}}
x*exp(x*(x/9))
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=xf{\left(x \right)} = x; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the power rule: xx goes to 11

    g(x)=exx9g{\left(x \right)} = e^{x \frac{x}{9}}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=xx9u = x \frac{x}{9}.

    2. The derivative of eue^{u} is itself.

    3. Then, apply the chain rule. Multiply by ddxxx9\frac{d}{d x} x \frac{x}{9}:

      1. Apply the quotient rule, which is:

        ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

        f(x)=x2f{\left(x \right)} = x^{2} and g(x)=9g{\left(x \right)} = 9.

        To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

        1. Apply the power rule: x2x^{2} goes to 2x2 x

        To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

        1. The derivative of the constant 99 is zero.

        Now plug in to the quotient rule:

        2x9\frac{2 x}{9}

      The result of the chain rule is:

      2xexx99\frac{2 x e^{x \frac{x}{9}}}{9}

    The result is: 2x2exx99+exx9\frac{2 x^{2} e^{x \frac{x}{9}}}{9} + e^{x \frac{x}{9}}

  2. Now simplify:

    (2x2+9)ex299\frac{\left(2 x^{2} + 9\right) e^{\frac{x^{2}}{9}}}{9}


The answer is:

(2x2+9)ex299\frac{\left(2 x^{2} + 9\right) e^{\frac{x^{2}}{9}}}{9}

The graph
02468-8-6-4-2-1010-20000002000000
The first derivative [src]
             x      x
           x*-    x*-
  /x   x\    9      9
x*|- + -|*e    + e   
  \9   9/            
x(x9+x9)exx9+exx9x \left(\frac{x}{9} + \frac{x}{9}\right) e^{x \frac{x}{9}} + e^{x \frac{x}{9}}
The second derivative [src]
                  2
                 x 
                 --
    /        2\  9 
2*x*\27 + 2*x /*e  
-------------------
         81        
2x(2x2+27)ex2981\frac{2 x \left(2 x^{2} + 27\right) e^{\frac{x^{2}}{9}}}{81}
The third derivative [src]
                                     2
                                    x 
                                    --
  /          2      2 /        2\\  9 
2*\243 + 54*x  + 2*x *\27 + 2*x //*e  
--------------------------------------
                 729                  
2(2x2(2x2+27)+54x2+243)ex29729\frac{2 \left(2 x^{2} \left(2 x^{2} + 27\right) + 54 x^{2} + 243\right) e^{\frac{x^{2}}{9}}}{729}