Mister Exam

Derivative of x*exp(3x)*cos3x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   3*x         
x*e   *cos(3*x)
xe3xcos(3x)x e^{3 x} \cos{\left(3 x \right)}
(x*exp(3*x))*cos(3*x)
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=xe3xf{\left(x \right)} = x e^{3 x}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the product rule:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

      f(x)=xf{\left(x \right)} = x; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Apply the power rule: xx goes to 11

      g(x)=e3xg{\left(x \right)} = e^{3 x}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. Let u=3xu = 3 x.

      2. The derivative of eue^{u} is itself.

      3. Then, apply the chain rule. Multiply by ddx3x\frac{d}{d x} 3 x:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 33

        The result of the chain rule is:

        3e3x3 e^{3 x}

      The result is: 3xe3x+e3x3 x e^{3 x} + e^{3 x}

    g(x)=cos(3x)g{\left(x \right)} = \cos{\left(3 x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=3xu = 3 x.

    2. The derivative of cosine is negative sine:

      dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx3x\frac{d}{d x} 3 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 33

      The result of the chain rule is:

      3sin(3x)- 3 \sin{\left(3 x \right)}

    The result is: 3xe3xsin(3x)+(3xe3x+e3x)cos(3x)- 3 x e^{3 x} \sin{\left(3 x \right)} + \left(3 x e^{3 x} + e^{3 x}\right) \cos{\left(3 x \right)}

  2. Now simplify:

    (3xsin(3x)+(3x+1)cos(3x))e3x\left(- 3 x \sin{\left(3 x \right)} + \left(3 x + 1\right) \cos{\left(3 x \right)}\right) e^{3 x}


The answer is:

(3xsin(3x)+(3x+1)cos(3x))e3x\left(- 3 x \sin{\left(3 x \right)} + \left(3 x + 1\right) \cos{\left(3 x \right)}\right) e^{3 x}

The graph
02468-8-6-4-2-1010-500000000000000500000000000000
The first derivative [src]
/     3*x    3*x\                 3*x         
\3*x*e    + e   /*cos(3*x) - 3*x*e   *sin(3*x)
3xe3xsin(3x)+(3xe3x+e3x)cos(3x)- 3 x e^{3 x} \sin{\left(3 x \right)} + \left(3 x e^{3 x} + e^{3 x}\right) \cos{\left(3 x \right)}
The second derivative [src]
                                                              3*x
3*((2 + 3*x)*cos(3*x) - 3*x*cos(3*x) - 2*(1 + 3*x)*sin(3*x))*e   
3(3xcos(3x)2(3x+1)sin(3x)+(3x+2)cos(3x))e3x3 \left(- 3 x \cos{\left(3 x \right)} - 2 \left(3 x + 1\right) \sin{\left(3 x \right)} + \left(3 x + 2\right) \cos{\left(3 x \right)}\right) e^{3 x}
The third derivative [src]
                                                                              3*x
27*(x*sin(3*x) + (1 + x)*cos(3*x) - (1 + 3*x)*cos(3*x) - (2 + 3*x)*sin(3*x))*e   
27(xsin(3x)+(x+1)cos(3x)(3x+1)cos(3x)(3x+2)sin(3x))e3x27 \left(x \sin{\left(3 x \right)} + \left(x + 1\right) \cos{\left(3 x \right)} - \left(3 x + 1\right) \cos{\left(3 x \right)} - \left(3 x + 2\right) \sin{\left(3 x \right)}\right) e^{3 x}