Mister Exam

Other calculators


(x-2)^2*(x-2)

Derivative of (x-2)^2*(x-2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
       2        
(x - 2) *(x - 2)
(x2)(x2)2\left(x - 2\right) \left(x - 2\right)^{2}
d /       2        \
--\(x - 2) *(x - 2)/
dx                  
ddx(x2)(x2)2\frac{d}{d x} \left(x - 2\right) \left(x - 2\right)^{2}
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=(x2)2f{\left(x \right)} = \left(x - 2\right)^{2}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Let u=x2u = x - 2.

    2. Apply the power rule: u2u^{2} goes to 2u2 u

    3. Then, apply the chain rule. Multiply by ddx(x2)\frac{d}{d x} \left(x - 2\right):

      1. Differentiate x2x - 2 term by term:

        1. Apply the power rule: xx goes to 11

        2. The derivative of the constant (1)2\left(-1\right) 2 is zero.

        The result is: 11

      The result of the chain rule is:

      2x42 x - 4

    g(x)=x2g{\left(x \right)} = x - 2; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Differentiate x2x - 2 term by term:

      1. Apply the power rule: xx goes to 11

      2. The derivative of the constant (1)2\left(-1\right) 2 is zero.

      The result is: 11

    The result is: (x2)2+(x2)(2x4)\left(x - 2\right)^{2} + \left(x - 2\right) \left(2 x - 4\right)

  2. Now simplify:

    3(x2)23 \left(x - 2\right)^{2}


The answer is:

3(x2)23 \left(x - 2\right)^{2}

The graph
02468-8-6-4-2-1010-25002500
The first derivative [src]
       2                     
(x - 2)  + (-4 + 2*x)*(x - 2)
(x2)2+(x2)(2x4)\left(x - 2\right)^{2} + \left(x - 2\right) \left(2 x - 4\right)
The second derivative [src]
6*(-2 + x)
6(x2)6 \left(x - 2\right)
The third derivative [src]
6
66
The graph
Derivative of (x-2)^2*(x-2)