Mister Exam

Other calculators

Derivative of (x-2)^(sinx^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
          2   
       sin (x)
(x - 2)       
$$\left(x - 2\right)^{\sin^{2}{\left(x \right)}}$$
(x - 2)^(sin(x)^2)
Detail solution
  1. Don't know the steps in finding this derivative.

    But the derivative is


The answer is:

The graph
The first derivative [src]
          2    /   2                                \
       sin (x) |sin (x)                             |
(x - 2)       *|------- + 2*cos(x)*log(x - 2)*sin(x)|
               \ x - 2                              /
$$\left(x - 2\right)^{\sin^{2}{\left(x \right)}} \left(2 \log{\left(x - 2 \right)} \sin{\left(x \right)} \cos{\left(x \right)} + \frac{\sin^{2}{\left(x \right)}}{x - 2}\right)$$
The second derivative [src]
           2    /                               2               2                                                                      \
        sin (x) |/sin(x)                       \     2       sin (x)         2                       2                  4*cos(x)*sin(x)|
(-2 + x)       *||------ + 2*cos(x)*log(-2 + x)| *sin (x) - --------- - 2*sin (x)*log(-2 + x) + 2*cos (x)*log(-2 + x) + ---------------|
                |\-2 + x                       /                    2                                                        -2 + x    |
                \                                           (-2 + x)                                                                   /
$$\left(x - 2\right)^{\sin^{2}{\left(x \right)}} \left(\left(2 \log{\left(x - 2 \right)} \cos{\left(x \right)} + \frac{\sin{\left(x \right)}}{x - 2}\right)^{2} \sin^{2}{\left(x \right)} - 2 \log{\left(x - 2 \right)} \sin^{2}{\left(x \right)} + 2 \log{\left(x - 2 \right)} \cos^{2}{\left(x \right)} + \frac{4 \sin{\left(x \right)} \cos{\left(x \right)}}{x - 2} - \frac{\sin^{2}{\left(x \right)}}{\left(x - 2\right)^{2}}\right)$$
The third derivative [src]
           2    /                               3                2           2           2                                                                                        /    2                                                                      \       \
        sin (x) |/sin(x)                       \     3      6*sin (x)   2*sin (x)   6*cos (x)                                 6*cos(x)*sin(x)     /sin(x)                       \ | sin (x)         2                       2                  4*cos(x)*sin(x)|       |
(-2 + x)       *||------ + 2*cos(x)*log(-2 + x)| *sin (x) - --------- + --------- + --------- - 8*cos(x)*log(-2 + x)*sin(x) - --------------- - 3*|------ + 2*cos(x)*log(-2 + x)|*|--------- - 2*cos (x)*log(-2 + x) + 2*sin (x)*log(-2 + x) - ---------------|*sin(x)|
                |\-2 + x                       /              -2 + x            3     -2 + x                                             2        \-2 + x                       / |        2                                                        -2 + x    |       |
                \                                                       (-2 + x)                                                 (-2 + x)                                         \(-2 + x)                                                                   /       /
$$\left(x - 2\right)^{\sin^{2}{\left(x \right)}} \left(\left(2 \log{\left(x - 2 \right)} \cos{\left(x \right)} + \frac{\sin{\left(x \right)}}{x - 2}\right)^{3} \sin^{3}{\left(x \right)} - 3 \left(2 \log{\left(x - 2 \right)} \cos{\left(x \right)} + \frac{\sin{\left(x \right)}}{x - 2}\right) \left(2 \log{\left(x - 2 \right)} \sin^{2}{\left(x \right)} - 2 \log{\left(x - 2 \right)} \cos^{2}{\left(x \right)} - \frac{4 \sin{\left(x \right)} \cos{\left(x \right)}}{x - 2} + \frac{\sin^{2}{\left(x \right)}}{\left(x - 2\right)^{2}}\right) \sin{\left(x \right)} - 8 \log{\left(x - 2 \right)} \sin{\left(x \right)} \cos{\left(x \right)} - \frac{6 \sin^{2}{\left(x \right)}}{x - 2} + \frac{6 \cos^{2}{\left(x \right)}}{x - 2} - \frac{6 \sin{\left(x \right)} \cos{\left(x \right)}}{\left(x - 2\right)^{2}} + \frac{2 \sin^{2}{\left(x \right)}}{\left(x - 2\right)^{3}}\right)$$