2
sin (x)
(x - 2)
(x - 2)^(sin(x)^2)
Don't know the steps in finding this derivative.
But the derivative is
The answer is:
2 / 2 \
sin (x) |sin (x) |
(x - 2) *|------- + 2*cos(x)*log(x - 2)*sin(x)|
\ x - 2 /
2 / 2 2 \
sin (x) |/sin(x) \ 2 sin (x) 2 2 4*cos(x)*sin(x)|
(-2 + x) *||------ + 2*cos(x)*log(-2 + x)| *sin (x) - --------- - 2*sin (x)*log(-2 + x) + 2*cos (x)*log(-2 + x) + ---------------|
|\-2 + x / 2 -2 + x |
\ (-2 + x) /
2 / 3 2 2 2 / 2 \ \
sin (x) |/sin(x) \ 3 6*sin (x) 2*sin (x) 6*cos (x) 6*cos(x)*sin(x) /sin(x) \ | sin (x) 2 2 4*cos(x)*sin(x)| |
(-2 + x) *||------ + 2*cos(x)*log(-2 + x)| *sin (x) - --------- + --------- + --------- - 8*cos(x)*log(-2 + x)*sin(x) - --------------- - 3*|------ + 2*cos(x)*log(-2 + x)|*|--------- - 2*cos (x)*log(-2 + x) + 2*sin (x)*log(-2 + x) - ---------------|*sin(x)|
|\-2 + x / -2 + x 3 -2 + x 2 \-2 + x / | 2 -2 + x | |
\ (-2 + x) (-2 + x) \(-2 + x) / /