Mister Exam

Other calculators

Derivative of (x-3)/sqrt(x^2+5)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   x - 3   
-----------
   ________
  /  2     
\/  x  + 5 
$$\frac{x - 3}{\sqrt{x^{2} + 5}}$$
(x - 3)/sqrt(x^2 + 5)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the power rule: goes to

      The result is:

    To find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. Apply the power rule: goes to

        The result is:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
     1         x*(x - 3) 
----------- - -----------
   ________           3/2
  /  2        / 2    \   
\/  x  + 5    \x  + 5/   
$$- \frac{x \left(x - 3\right)}{\left(x^{2} + 5\right)^{\frac{3}{2}}} + \frac{1}{\sqrt{x^{2} + 5}}$$
The second derivative [src]
       /         2 \         
       |      3*x  |         
-2*x + |-1 + ------|*(-3 + x)
       |          2|         
       \     5 + x /         
-----------------------------
                 3/2         
         /     2\            
         \5 + x /            
$$\frac{- 2 x + \left(x - 3\right) \left(\frac{3 x^{2}}{x^{2} + 5} - 1\right)}{\left(x^{2} + 5\right)^{\frac{3}{2}}}$$
The third derivative [src]
  /                         /         2 \\
  |                         |      5*x  ||
  |              x*(-3 + x)*|-3 + ------||
  |         2               |          2||
  |      3*x                \     5 + x /|
3*|-1 + ------ - ------------------------|
  |          2                 2         |
  \     5 + x             5 + x          /
------------------------------------------
                       3/2                
               /     2\                   
               \5 + x /                   
$$\frac{3 \left(\frac{3 x^{2}}{x^{2} + 5} - \frac{x \left(x - 3\right) \left(\frac{5 x^{2}}{x^{2} + 5} - 3\right)}{x^{2} + 5} - 1\right)}{\left(x^{2} + 5\right)^{\frac{3}{2}}}$$