Mister Exam

Other calculators


(x-1)/(x+3)^2

Derivative of (x-1)/(x+3)^2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 x - 1  
--------
       2
(x + 3) 
x1(x+3)2\frac{x - 1}{\left(x + 3\right)^{2}}
(x - 1)/(x + 3)^2
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=x1f{\left(x \right)} = x - 1 and g(x)=(x+3)2g{\left(x \right)} = \left(x + 3\right)^{2}.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Differentiate x1x - 1 term by term:

      1. The derivative of the constant 1-1 is zero.

      2. Apply the power rule: xx goes to 11

      The result is: 11

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=x+3u = x + 3.

    2. Apply the power rule: u2u^{2} goes to 2u2 u

    3. Then, apply the chain rule. Multiply by ddx(x+3)\frac{d}{d x} \left(x + 3\right):

      1. Differentiate x+3x + 3 term by term:

        1. The derivative of the constant 33 is zero.

        2. Apply the power rule: xx goes to 11

        The result is: 11

      The result of the chain rule is:

      2x+62 x + 6

    Now plug in to the quotient rule:

    (x1)(2x+6)+(x+3)2(x+3)4\frac{- \left(x - 1\right) \left(2 x + 6\right) + \left(x + 3\right)^{2}}{\left(x + 3\right)^{4}}

  2. Now simplify:

    5x(x+3)3\frac{5 - x}{\left(x + 3\right)^{3}}


The answer is:

5x(x+3)3\frac{5 - x}{\left(x + 3\right)^{3}}

The graph
02468-8-6-4-2-1010-2500025000
The first derivative [src]
   1       (-6 - 2*x)*(x - 1)
-------- + ------------------
       2               4     
(x + 3)         (x + 3)      
(2x6)(x1)(x+3)4+1(x+3)2\frac{\left(- 2 x - 6\right) \left(x - 1\right)}{\left(x + 3\right)^{4}} + \frac{1}{\left(x + 3\right)^{2}}
The second derivative [src]
  /     3*(-1 + x)\
2*|-2 + ----------|
  \       3 + x   /
-------------------
             3     
      (3 + x)      
2(3(x1)x+32)(x+3)3\frac{2 \left(\frac{3 \left(x - 1\right)}{x + 3} - 2\right)}{\left(x + 3\right)^{3}}
The third derivative [src]
  /    4*(-1 + x)\
6*|3 - ----------|
  \      3 + x   /
------------------
            4     
     (3 + x)      
6(4(x1)x+3+3)(x+3)4\frac{6 \left(- \frac{4 \left(x - 1\right)}{x + 3} + 3\right)}{\left(x + 3\right)^{4}}
The graph
Derivative of (x-1)/(x+3)^2