Mister Exam

Derivative of (x-5)/(x-3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
x - 5
-----
x - 3
x5x3\frac{x - 5}{x - 3}
(x - 5)/(x - 3)
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=x5f{\left(x \right)} = x - 5 and g(x)=x3g{\left(x \right)} = x - 3.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Differentiate x5x - 5 term by term:

      1. The derivative of the constant 5-5 is zero.

      2. Apply the power rule: xx goes to 11

      The result is: 11

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Differentiate x3x - 3 term by term:

      1. The derivative of the constant 3-3 is zero.

      2. Apply the power rule: xx goes to 11

      The result is: 11

    Now plug in to the quotient rule:

    2(x3)2\frac{2}{\left(x - 3\right)^{2}}


The answer is:

2(x3)2\frac{2}{\left(x - 3\right)^{2}}

The graph
02468-8-6-4-2-1010-500500
The first derivative [src]
  1      x - 5  
----- - --------
x - 3          2
        (x - 3) 
x5(x3)2+1x3- \frac{x - 5}{\left(x - 3\right)^{2}} + \frac{1}{x - 3}
The second derivative [src]
  /     -5 + x\
2*|-1 + ------|
  \     -3 + x/
---------------
           2   
   (-3 + x)    
2(x5x31)(x3)2\frac{2 \left(\frac{x - 5}{x - 3} - 1\right)}{\left(x - 3\right)^{2}}
The third derivative [src]
  /    -5 + x\
6*|1 - ------|
  \    -3 + x/
--------------
          3   
  (-3 + x)    
6(x5x3+1)(x3)3\frac{6 \left(- \frac{x - 5}{x - 3} + 1\right)}{\left(x - 3\right)^{3}}