Mister Exam

Other calculators

Derivative of -3x-5/(x-3)^2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
          5    
-3*x - --------
              2
       (x - 3) 
3x5(x3)2- 3 x - \frac{5}{\left(x - 3\right)^{2}}
-3*x - 5/(x - 3)^2
Detail solution
  1. Differentiate 3x5(x3)2- 3 x - \frac{5}{\left(x - 3\right)^{2}} term by term:

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: xx goes to 11

      So, the result is: 3-3

    2. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let u=(x3)2u = \left(x - 3\right)^{2}.

      2. Apply the power rule: 1u\frac{1}{u} goes to 1u2- \frac{1}{u^{2}}

      3. Then, apply the chain rule. Multiply by ddx(x3)2\frac{d}{d x} \left(x - 3\right)^{2}:

        1. Let u=x3u = x - 3.

        2. Apply the power rule: u2u^{2} goes to 2u2 u

        3. Then, apply the chain rule. Multiply by ddx(x3)\frac{d}{d x} \left(x - 3\right):

          1. Differentiate x3x - 3 term by term:

            1. Apply the power rule: xx goes to 11

            2. The derivative of the constant 3-3 is zero.

            The result is: 11

          The result of the chain rule is:

          2x62 x - 6

        The result of the chain rule is:

        2x6(x3)4- \frac{2 x - 6}{\left(x - 3\right)^{4}}

      So, the result is: 5(2x6)(x3)4\frac{5 \left(2 x - 6\right)}{\left(x - 3\right)^{4}}

    The result is: 3+5(2x6)(x3)4-3 + \frac{5 \left(2 x - 6\right)}{\left(x - 3\right)^{4}}

  2. Now simplify:

    10x3(x3)430(x3)4\frac{10 x - 3 \left(x - 3\right)^{4} - 30}{\left(x - 3\right)^{4}}


The answer is:

10x3(x3)430(x3)4\frac{10 x - 3 \left(x - 3\right)^{4} - 30}{\left(x - 3\right)^{4}}

The graph
02468-8-6-4-2-1010-5000050000
The first derivative [src]
     5*(6 - 2*x)
-3 - -----------
              4 
       (x - 3)  
5(62x)(x3)43- \frac{5 \left(6 - 2 x\right)}{\left(x - 3\right)^{4}} - 3
The second derivative [src]
   -30   
---------
        4
(-3 + x) 
30(x3)4- \frac{30}{\left(x - 3\right)^{4}}
The third derivative [src]
   120   
---------
        5
(-3 + x) 
120(x3)5\frac{120}{\left(x - 3\right)^{5}}