Mister Exam

Derivative of xexp(x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   / 2\
   \x /
x*e    
xex2x e^{x^{2}}
x*exp(x^2)
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=xf{\left(x \right)} = x; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the power rule: xx goes to 11

    g(x)=ex2g{\left(x \right)} = e^{x^{2}}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=x2u = x^{2}.

    2. The derivative of eue^{u} is itself.

    3. Then, apply the chain rule. Multiply by ddxx2\frac{d}{d x} x^{2}:

      1. Apply the power rule: x2x^{2} goes to 2x2 x

      The result of the chain rule is:

      2xex22 x e^{x^{2}}

    The result is: 2x2ex2+ex22 x^{2} e^{x^{2}} + e^{x^{2}}

  2. Now simplify:

    (2x2+1)ex2\left(2 x^{2} + 1\right) e^{x^{2}}


The answer is:

(2x2+1)ex2\left(2 x^{2} + 1\right) e^{x^{2}}

The graph
02468-8-6-4-2-1010-5e4510e45
The first derivative [src]
      / 2\    / 2\
   2  \x /    \x /
2*x *e     + e    
2x2ex2+ex22 x^{2} e^{x^{2}} + e^{x^{2}}
The second derivative [src]
                / 2\
    /       2\  \x /
2*x*\3 + 2*x /*e    
2x(2x2+3)ex22 x \left(2 x^{2} + 3\right) e^{x^{2}}
The third derivative [src]
                                / 2\
  /       2      2 /       2\\  \x /
2*\3 + 6*x  + 2*x *\3 + 2*x //*e    
2(2x2(2x2+3)+6x2+3)ex22 \left(2 x^{2} \left(2 x^{2} + 3\right) + 6 x^{2} + 3\right) e^{x^{2}}