Mister Exam

Other calculators


(x+3)^2*(x+5)-1

Derivative of (x+3)^2*(x+5)-1

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
       2            
(x + 3) *(x + 5) - 1
(x+3)2(x+5)1\left(x + 3\right)^{2} \left(x + 5\right) - 1
(x + 3)^2*(x + 5) - 1
Detail solution
  1. Differentiate (x+3)2(x+5)1\left(x + 3\right)^{2} \left(x + 5\right) - 1 term by term:

    1. Apply the product rule:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

      f(x)=(x+3)2f{\left(x \right)} = \left(x + 3\right)^{2}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Let u=x+3u = x + 3.

      2. Apply the power rule: u2u^{2} goes to 2u2 u

      3. Then, apply the chain rule. Multiply by ddx(x+3)\frac{d}{d x} \left(x + 3\right):

        1. Differentiate x+3x + 3 term by term:

          1. Apply the power rule: xx goes to 11

          2. The derivative of the constant 33 is zero.

          The result is: 11

        The result of the chain rule is:

        2x+62 x + 6

      g(x)=x+5g{\left(x \right)} = x + 5; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. Differentiate x+5x + 5 term by term:

        1. Apply the power rule: xx goes to 11

        2. The derivative of the constant 55 is zero.

        The result is: 11

      The result is: (x+3)2+(x+5)(2x+6)\left(x + 3\right)^{2} + \left(x + 5\right) \left(2 x + 6\right)

    2. The derivative of the constant 1-1 is zero.

    The result is: (x+3)2+(x+5)(2x+6)\left(x + 3\right)^{2} + \left(x + 5\right) \left(2 x + 6\right)

  2. Now simplify:

    (x+3)(3x+13)\left(x + 3\right) \left(3 x + 13\right)


The answer is:

(x+3)(3x+13)\left(x + 3\right) \left(3 x + 13\right)

The graph
02468-8-6-4-2-1010-50005000
The first derivative [src]
       2                    
(x + 3)  + (6 + 2*x)*(x + 5)
(x+3)2+(x+5)(2x+6)\left(x + 3\right)^{2} + \left(x + 5\right) \left(2 x + 6\right)
The second derivative [src]
2*(11 + 3*x)
2(3x+11)2 \left(3 x + 11\right)
The third derivative [src]
6
66
The graph
Derivative of (x+3)^2*(x+5)-1