Mister Exam

Other calculators


x/(x^2-9)

Derivative of x/(x^2-9)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  x   
------
 2    
x  - 9
$$\frac{x}{x^{2} - 9}$$
x/(x^2 - 9)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Apply the power rule: goes to

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the power rule: goes to

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
               2  
  1         2*x   
------ - ---------
 2               2
x  - 9   / 2    \ 
         \x  - 9/ 
$$- \frac{2 x^{2}}{\left(x^{2} - 9\right)^{2}} + \frac{1}{x^{2} - 9}$$
The second derivative [src]
    /          2 \
    |       4*x  |
2*x*|-3 + -------|
    |           2|
    \     -9 + x /
------------------
             2    
    /      2\     
    \-9 + x /     
$$\frac{2 x \left(\frac{4 x^{2}}{x^{2} - 9} - 3\right)}{\left(x^{2} - 9\right)^{2}}$$
The third derivative [src]
  /                    /          2 \\
  |                  2 |       2*x  ||
  |               4*x *|-1 + -------||
  |          2         |           2||
  |       4*x          \     -9 + x /|
6*|-1 + ------- - -------------------|
  |           2               2      |
  \     -9 + x          -9 + x       /
--------------------------------------
                       2              
              /      2\               
              \-9 + x /               
$$\frac{6 \left(- \frac{4 x^{2} \left(\frac{2 x^{2}}{x^{2} - 9} - 1\right)}{x^{2} - 9} + \frac{4 x^{2}}{x^{2} - 9} - 1\right)}{\left(x^{2} - 9\right)^{2}}$$
The graph
Derivative of x/(x^2-9)