Mister Exam

Other calculators


(x/2)+sin(log(x))

Derivative of (x/2)+sin(log(x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
x              
- + sin(log(x))
2              
x2+sin(log(x))\frac{x}{2} + \sin{\left(\log{\left(x \right)} \right)}
x/2 + sin(log(x))
Detail solution
  1. Differentiate x2+sin(log(x))\frac{x}{2} + \sin{\left(\log{\left(x \right)} \right)} term by term:

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: xx goes to 11

      So, the result is: 12\frac{1}{2}

    2. Let u=log(x)u = \log{\left(x \right)}.

    3. The derivative of sine is cosine:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    4. Then, apply the chain rule. Multiply by ddxlog(x)\frac{d}{d x} \log{\left(x \right)}:

      1. The derivative of log(x)\log{\left(x \right)} is 1x\frac{1}{x}.

      The result of the chain rule is:

      cos(log(x))x\frac{\cos{\left(\log{\left(x \right)} \right)}}{x}

    The result is: 12+cos(log(x))x\frac{1}{2} + \frac{\cos{\left(\log{\left(x \right)} \right)}}{x}

  2. Now simplify:

    x2+cos(log(x))x\frac{\frac{x}{2} + \cos{\left(\log{\left(x \right)} \right)}}{x}


The answer is:

x2+cos(log(x))x\frac{\frac{x}{2} + \cos{\left(\log{\left(x \right)} \right)}}{x}

The graph
02468-8-6-4-2-1010-1010
The first derivative [src]
1   cos(log(x))
- + -----------
2        x     
12+cos(log(x))x\frac{1}{2} + \frac{\cos{\left(\log{\left(x \right)} \right)}}{x}
The second derivative [src]
-(cos(log(x)) + sin(log(x))) 
-----------------------------
               2             
              x              
sin(log(x))+cos(log(x))x2- \frac{\sin{\left(\log{\left(x \right)} \right)} + \cos{\left(\log{\left(x \right)} \right)}}{x^{2}}
The third derivative [src]
3*sin(log(x)) + cos(log(x))
---------------------------
              3            
             x             
3sin(log(x))+cos(log(x))x3\frac{3 \sin{\left(\log{\left(x \right)} \right)} + \cos{\left(\log{\left(x \right)} \right)}}{x^{3}}
The graph
Derivative of (x/2)+sin(log(x))