Detail solution
-
Apply the product rule:
; to find :
-
Apply the product rule:
; to find :
-
Apply the power rule: goes to
; to find :
-
The derivative of sine is cosine:
The result is:
; to find :
-
The derivative of cosine is negative sine:
The result is:
-
Now simplify:
The answer is:
The first derivative
[src]
/ 3 2 \ 3 2
\x *cos(x) + 3*x *sin(x)/*cos(x) - x *sin (x)
$$- x^{3} \sin^{2}{\left(x \right)} + \left(x^{3} \cos{\left(x \right)} + 3 x^{2} \sin{\left(x \right)}\right) \cos{\left(x \right)}$$
The second derivative
[src]
// 2 \ 2 \
x*\\6*sin(x) - x *sin(x) + 6*x*cos(x)/*cos(x) - x *cos(x)*sin(x) - 2*x*(3*sin(x) + x*cos(x))*sin(x)/
$$x \left(- x^{2} \sin{\left(x \right)} \cos{\left(x \right)} - 2 x \left(x \cos{\left(x \right)} + 3 \sin{\left(x \right)}\right) \sin{\left(x \right)} + \left(- x^{2} \sin{\left(x \right)} + 6 x \cos{\left(x \right)} + 6 \sin{\left(x \right)}\right) \cos{\left(x \right)}\right)$$
The third derivative
[src]
3 2 / 3 2 \ / 2 \ 2
x *sin (x) - \-6*sin(x) + x *cos(x) - 18*x*cos(x) + 9*x *sin(x)/*cos(x) - 3*x*\6*sin(x) - x *sin(x) + 6*x*cos(x)/*sin(x) - 3*x *(3*sin(x) + x*cos(x))*cos(x)
$$x^{3} \sin^{2}{\left(x \right)} - 3 x^{2} \left(x \cos{\left(x \right)} + 3 \sin{\left(x \right)}\right) \cos{\left(x \right)} - 3 x \left(- x^{2} \sin{\left(x \right)} + 6 x \cos{\left(x \right)} + 6 \sin{\left(x \right)}\right) \sin{\left(x \right)} - \left(x^{3} \cos{\left(x \right)} + 9 x^{2} \sin{\left(x \right)} - 18 x \cos{\left(x \right)} - 6 \sin{\left(x \right)}\right) \cos{\left(x \right)}$$