Mister Exam

Derivative of x^3sinxcosx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 3              
x *sin(x)*cos(x)
$$x^{3} \sin{\left(x \right)} \cos{\left(x \right)}$$
(x^3*sin(x))*cos(x)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the product rule:

      ; to find :

      1. Apply the power rule: goes to

      ; to find :

      1. The derivative of sine is cosine:

      The result is:

    ; to find :

    1. The derivative of cosine is negative sine:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
/ 3             2       \           3    2   
\x *cos(x) + 3*x *sin(x)/*cos(x) - x *sin (x)
$$- x^{3} \sin^{2}{\left(x \right)} + \left(x^{3} \cos{\left(x \right)} + 3 x^{2} \sin{\left(x \right)}\right) \cos{\left(x \right)}$$
The second derivative [src]
  //            2                    \           2                                                 \
x*\\6*sin(x) - x *sin(x) + 6*x*cos(x)/*cos(x) - x *cos(x)*sin(x) - 2*x*(3*sin(x) + x*cos(x))*sin(x)/
$$x \left(- x^{2} \sin{\left(x \right)} \cos{\left(x \right)} - 2 x \left(x \cos{\left(x \right)} + 3 \sin{\left(x \right)}\right) \sin{\left(x \right)} + \left(- x^{2} \sin{\left(x \right)} + 6 x \cos{\left(x \right)} + 6 \sin{\left(x \right)}\right) \cos{\left(x \right)}\right)$$
The third derivative [src]
 3    2      /             3                           2       \              /            2                    \             2                             
x *sin (x) - \-6*sin(x) + x *cos(x) - 18*x*cos(x) + 9*x *sin(x)/*cos(x) - 3*x*\6*sin(x) - x *sin(x) + 6*x*cos(x)/*sin(x) - 3*x *(3*sin(x) + x*cos(x))*cos(x)
$$x^{3} \sin^{2}{\left(x \right)} - 3 x^{2} \left(x \cos{\left(x \right)} + 3 \sin{\left(x \right)}\right) \cos{\left(x \right)} - 3 x \left(- x^{2} \sin{\left(x \right)} + 6 x \cos{\left(x \right)} + 6 \sin{\left(x \right)}\right) \sin{\left(x \right)} - \left(x^{3} \cos{\left(x \right)} + 9 x^{2} \sin{\left(x \right)} - 18 x \cos{\left(x \right)} - 6 \sin{\left(x \right)}\right) \cos{\left(x \right)}$$