Mister Exam

Other calculators


2xe^(x^2)

Derivative of 2xe^(x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / 2\
     \x /
2*x*e    
$$2 x e^{x^{2}}$$
  /     / 2\\
d |     \x /|
--\2*x*e    /
dx           
$$\frac{d}{d x} 2 x e^{x^{2}}$$
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Apply the product rule:

      ; to find :

      1. Apply the power rule: goes to

      ; to find :

      1. Let .

      2. The derivative of is itself.

      3. Then, apply the chain rule. Multiply by :

        1. Apply the power rule: goes to

        The result of the chain rule is:

      The result is:

    So, the result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   / 2\         / 2\
   \x /      2  \x /
2*e     + 4*x *e    
$$4 x^{2} e^{x^{2}} + 2 e^{x^{2}}$$
The second derivative [src]
                / 2\
    /       2\  \x /
4*x*\3 + 2*x /*e    
$$4 x \left(2 x^{2} + 3\right) e^{x^{2}}$$
The third derivative [src]
                                / 2\
  /       2      2 /       2\\  \x /
4*\3 + 6*x  + 2*x *\3 + 2*x //*e    
$$4 \cdot \left(2 x^{2} \cdot \left(2 x^{2} + 3\right) + 6 x^{2} + 3\right) e^{x^{2}}$$
The graph
Derivative of 2xe^(x^2)