Mister Exam

Other calculators


2xe^(x^2)

Derivative of 2xe^(x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / 2\
     \x /
2*x*e    
2xex22 x e^{x^{2}}
  /     / 2\\
d |     \x /|
--\2*x*e    /
dx           
ddx2xex2\frac{d}{d x} 2 x e^{x^{2}}
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Apply the product rule:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

      f(x)=xf{\left(x \right)} = x; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Apply the power rule: xx goes to 11

      g(x)=ex2g{\left(x \right)} = e^{x^{2}}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. Let u=x2u = x^{2}.

      2. The derivative of eue^{u} is itself.

      3. Then, apply the chain rule. Multiply by ddxx2\frac{d}{d x} x^{2}:

        1. Apply the power rule: x2x^{2} goes to 2x2 x

        The result of the chain rule is:

        2xex22 x e^{x^{2}}

      The result is: 2x2ex2+ex22 x^{2} e^{x^{2}} + e^{x^{2}}

    So, the result is: 4x2ex2+2ex24 x^{2} e^{x^{2}} + 2 e^{x^{2}}

  2. Now simplify:

    (4x2+2)ex2\left(4 x^{2} + 2\right) e^{x^{2}}


The answer is:

(4x2+2)ex2\left(4 x^{2} + 2\right) e^{x^{2}}

The graph
02468-8-6-4-2-10102e46-1e46
The first derivative [src]
   / 2\         / 2\
   \x /      2  \x /
2*e     + 4*x *e    
4x2ex2+2ex24 x^{2} e^{x^{2}} + 2 e^{x^{2}}
The second derivative [src]
                / 2\
    /       2\  \x /
4*x*\3 + 2*x /*e    
4x(2x2+3)ex24 x \left(2 x^{2} + 3\right) e^{x^{2}}
The third derivative [src]
                                / 2\
  /       2      2 /       2\\  \x /
4*\3 + 6*x  + 2*x *\3 + 2*x //*e    
4(2x2(2x2+3)+6x2+3)ex24 \cdot \left(2 x^{2} \cdot \left(2 x^{2} + 3\right) + 6 x^{2} + 3\right) e^{x^{2}}
The graph
Derivative of 2xe^(x^2)