Detail solution
-
Apply the product rule:
; to find :
-
; to find :
-
Differentiate term by term:
-
Apply the power rule: goes to
-
The derivative of the constant is zero.
The result is:
The result is:
-
Now simplify:
The answer is:
The first derivative
[src]
x x
2 + 2 *(x + 10)*log(2)
$$2^{x} \left(x + 10\right) \log{\left(2 \right)} + 2^{x}$$
The second derivative
[src]
x
2 *(2 + (10 + x)*log(2))*log(2)
$$2^{x} \left(\left(x + 10\right) \log{\left(2 \right)} + 2\right) \log{\left(2 \right)}$$
The third derivative
[src]
x 2
2 *log (2)*(3 + (10 + x)*log(2))
$$2^{x} \left(\left(x + 10\right) \log{\left(2 \right)} + 3\right) \log{\left(2 \right)}^{2}$$