Mister Exam

Other calculators


(2*x+3)/(log(x)/log(3))

Derivative of (2*x+3)/(log(x)/log(3))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
2*x + 3 
--------
/log(x)\
|------|
\log(3)/
$$\frac{2 x + 3}{\frac{1}{\log{\left(3 \right)}} \log{\left(x \right)}}$$
d /2*x + 3 \
--|--------|
dx|/log(x)\|
  ||------||
  \\log(3)//
$$\frac{d}{d x} \frac{2 x + 3}{\frac{1}{\log{\left(3 \right)}} \log{\left(x \right)}}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      So, the result is:

    To find :

    1. The derivative of is .

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
2*log(3)   (2*x + 3)*log(3)
-------- - ----------------
 log(x)            2       
              x*log (x)    
$$\frac{2 \log{\left(3 \right)}}{\log{\left(x \right)}} - \frac{\left(2 x + 3\right) \log{\left(3 \right)}}{x \log{\left(x \right)}^{2}}$$
The second derivative [src]
/     /      2   \          \       
|     |1 + ------|*(3 + 2*x)|       
|     \    log(x)/          |       
|-4 + ----------------------|*log(3)
\               x           /       
------------------------------------
                  2                 
             x*log (x)              
$$\frac{\left(-4 + \frac{\left(1 + \frac{2}{\log{\left(x \right)}}\right) \left(2 x + 3\right)}{x}\right) \log{\left(3 \right)}}{x \log{\left(x \right)}^{2}}$$
The third derivative [src]
  /                       /      3         3   \\       
  |             (3 + 2*x)*|1 + ------ + -------||       
  |                       |    log(x)      2   ||       
  |      6                \             log (x)/|       
2*|3 + ------ - --------------------------------|*log(3)
  \    log(x)                  x                /       
--------------------------------------------------------
                        2    2                          
                       x *log (x)                       
$$\frac{2 \cdot \left(3 + \frac{6}{\log{\left(x \right)}} - \frac{\left(2 x + 3\right) \left(1 + \frac{3}{\log{\left(x \right)}} + \frac{3}{\log{\left(x \right)}^{2}}\right)}{x}\right) \log{\left(3 \right)}}{x^{2} \log{\left(x \right)}^{2}}$$
The graph
Derivative of (2*x+3)/(log(x)/log(3))