2*x + 3 -------- /log(x)\ |------| \log(3)/
d /2*x + 3 \ --|--------| dx|/log(x)\| ||------|| \\log(3)//
Apply the quotient rule, which is:
and .
To find :
The derivative of a constant times a function is the constant times the derivative of the function.
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
So, the result is:
To find :
The derivative of is .
Now plug in to the quotient rule:
Now simplify:
The answer is:
2*log(3) (2*x + 3)*log(3)
-------- - ----------------
log(x) 2
x*log (x)
/ / 2 \ \
| |1 + ------|*(3 + 2*x)|
| \ log(x)/ |
|-4 + ----------------------|*log(3)
\ x /
------------------------------------
2
x*log (x)
/ / 3 3 \\
| (3 + 2*x)*|1 + ------ + -------||
| | log(x) 2 ||
| 6 \ log (x)/|
2*|3 + ------ - --------------------------------|*log(3)
\ log(x) x /
--------------------------------------------------------
2 2
x *log (x)