Mister Exam

Derivative of cos3^x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   x   
cos (3)
$$\cos^{x}{\left(3 \right)}$$
cos(3)^x
Detail solution

The answer is:

The graph
The first derivative [src]
   x                         
cos (3)*(pi*I + log(-cos(3)))
$$\left(\log{\left(- \cos{\left(3 \right)} \right)} + i \pi\right) \cos^{x}{\left(3 \right)}$$
The second derivative [src]
                     2    x   
(pi*I + log(-cos(3))) *cos (3)
$$\left(\log{\left(- \cos{\left(3 \right)} \right)} + i \pi\right)^{2} \cos^{x}{\left(3 \right)}$$
The third derivative [src]
                     3    x   
(pi*I + log(-cos(3))) *cos (3)
$$\left(\log{\left(- \cos{\left(3 \right)} \right)} + i \pi\right)^{3} \cos^{x}{\left(3 \right)}$$
The graph
Derivative of cos3^x