Mister Exam

Other calculators

Derivative of (2*sqrt(x))*(ln(x)-2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    ___             
2*\/ x *(log(x) - 2)
2x(log(x)2)2 \sqrt{x} \left(\log{\left(x \right)} - 2\right)
(2*sqrt(x))*(log(x) - 2)
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=2xf{\left(x \right)} = 2 \sqrt{x}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: x\sqrt{x} goes to 12x\frac{1}{2 \sqrt{x}}

      So, the result is: 1x\frac{1}{\sqrt{x}}

    g(x)=log(x)2g{\left(x \right)} = \log{\left(x \right)} - 2; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Differentiate log(x)2\log{\left(x \right)} - 2 term by term:

      1. The derivative of log(x)\log{\left(x \right)} is 1x\frac{1}{x}.

      2. The derivative of the constant 2-2 is zero.

      The result is: 1x\frac{1}{x}

    The result is: log(x)2x+2x\frac{\log{\left(x \right)} - 2}{\sqrt{x}} + \frac{2}{\sqrt{x}}

  2. Now simplify:

    log(x)x\frac{\log{\left(x \right)}}{\sqrt{x}}


The answer is:

log(x)x\frac{\log{\left(x \right)}}{\sqrt{x}}

The graph
02468-8-6-4-2-1010-1010
The first derivative [src]
  2     log(x) - 2
----- + ----------
  ___       ___   
\/ x      \/ x    
log(x)2x+2x\frac{\log{\left(x \right)} - 2}{\sqrt{x}} + \frac{2}{\sqrt{x}}
The second derivative [src]
-(-2 + log(x)) 
---------------
        3/2    
     2*x       
log(x)22x32- \frac{\log{\left(x \right)} - 2}{2 x^{\frac{3}{2}}}
The third derivative [src]
-8 + 3*log(x)
-------------
       5/2   
    4*x      
3log(x)84x52\frac{3 \log{\left(x \right)} - 8}{4 x^{\frac{5}{2}}}