Mister Exam

Other calculators

Derivative of 2*sin(3*x)cos(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
2*sin(3*x)*cos(x)
2sin(3x)cos(x)2 \sin{\left(3 x \right)} \cos{\left(x \right)}
(2*sin(3*x))*cos(x)
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=2sin(3x)f{\left(x \right)} = 2 \sin{\left(3 x \right)}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let u=3xu = 3 x.

      2. The derivative of sine is cosine:

        ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddx3x\frac{d}{d x} 3 x:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 33

        The result of the chain rule is:

        3cos(3x)3 \cos{\left(3 x \right)}

      So, the result is: 6cos(3x)6 \cos{\left(3 x \right)}

    g(x)=cos(x)g{\left(x \right)} = \cos{\left(x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. The derivative of cosine is negative sine:

      ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

    The result is: 2sin(x)sin(3x)+6cos(x)cos(3x)- 2 \sin{\left(x \right)} \sin{\left(3 x \right)} + 6 \cos{\left(x \right)} \cos{\left(3 x \right)}

  2. Now simplify:

    2cos(2x)+4cos(4x)2 \cos{\left(2 x \right)} + 4 \cos{\left(4 x \right)}


The answer is:

2cos(2x)+4cos(4x)2 \cos{\left(2 x \right)} + 4 \cos{\left(4 x \right)}

The graph
02468-8-6-4-2-1010-1010
The first derivative [src]
-2*sin(x)*sin(3*x) + 6*cos(x)*cos(3*x)
2sin(x)sin(3x)+6cos(x)cos(3x)- 2 \sin{\left(x \right)} \sin{\left(3 x \right)} + 6 \cos{\left(x \right)} \cos{\left(3 x \right)}
The second derivative [src]
-4*(3*cos(3*x)*sin(x) + 5*cos(x)*sin(3*x))
4(3sin(x)cos(3x)+5sin(3x)cos(x))- 4 \left(3 \sin{\left(x \right)} \cos{\left(3 x \right)} + 5 \sin{\left(3 x \right)} \cos{\left(x \right)}\right)
The third derivative [src]
8*(-9*cos(x)*cos(3*x) + 7*sin(x)*sin(3*x))
8(7sin(x)sin(3x)9cos(x)cos(3x))8 \left(7 \sin{\left(x \right)} \sin{\left(3 x \right)} - 9 \cos{\left(x \right)} \cos{\left(3 x \right)}\right)