Mister Exam

Other calculators


2*e^x/x

Derivative of 2*e^x/x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   x
2*E 
----
 x  
$$\frac{2 e^{x}}{x}$$
(2*E^x)/x
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. The derivative of is itself.

      So, the result is:

    To find :

    1. Apply the power rule: goes to

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
     x      x
  2*e    2*e 
- ---- + ----
    2     x  
   x         
$$\frac{2 e^{x}}{x} - \frac{2 e^{x}}{x^{2}}$$
The second derivative [src]
  /    2   2 \  x
2*|1 - - + --|*e 
  |    x    2|   
  \        x /   
-----------------
        x        
$$\frac{2 \left(1 - \frac{2}{x} + \frac{2}{x^{2}}\right) e^{x}}{x}$$
The third derivative [src]
  /    6    3   6 \  x
2*|1 - -- - - + --|*e 
  |     3   x    2|   
  \    x        x /   
----------------------
          x           
$$\frac{2 \left(1 - \frac{3}{x} + \frac{6}{x^{2}} - \frac{6}{x^{3}}\right) e^{x}}{x}$$
The graph
Derivative of 2*e^x/x