Mister Exam

Other calculators

Derivative of (2-sqrt(x))*tgx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
/      ___\       
\2 - \/ x /*tan(x)
$$\left(2 - \sqrt{x}\right) \tan{\left(x \right)}$$
(2 - sqrt(x))*tan(x)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    ; to find :

    1. Rewrite the function to be differentiated:

    2. Apply the quotient rule, which is:

      and .

      To find :

      1. The derivative of sine is cosine:

      To find :

      1. The derivative of cosine is negative sine:

      Now plug in to the quotient rule:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
/       2   \ /      ___\    tan(x)
\1 + tan (x)/*\2 - \/ x / - -------
                                ___
                            2*\/ x 
$$\left(2 - \sqrt{x}\right) \left(\tan^{2}{\left(x \right)} + 1\right) - \frac{\tan{\left(x \right)}}{2 \sqrt{x}}$$
The second derivative [src]
         2                                                  
  1 + tan (x)   tan(x)     /       2   \ /       ___\       
- ----------- + ------ - 2*\1 + tan (x)/*\-2 + \/ x /*tan(x)
       ___         3/2                                      
     \/ x       4*x                                         
$$- 2 \left(\sqrt{x} - 2\right) \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} - \frac{\tan^{2}{\left(x \right)} + 1}{\sqrt{x}} + \frac{\tan{\left(x \right)}}{4 x^{\frac{3}{2}}}$$
The third derivative [src]
               /       2   \     /       2   \                                                      
  3*tan(x)   3*\1 + tan (x)/   3*\1 + tan (x)/*tan(x)     /       2   \ /         2   \ /       ___\
- -------- + --------------- - ---------------------- - 2*\1 + tan (x)/*\1 + 3*tan (x)/*\-2 + \/ x /
      5/2            3/2                 ___                                                        
   8*x            4*x                  \/ x                                                         
$$- 2 \left(\sqrt{x} - 2\right) \left(\tan^{2}{\left(x \right)} + 1\right) \left(3 \tan^{2}{\left(x \right)} + 1\right) - \frac{3 \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)}}{\sqrt{x}} + \frac{3 \left(\tan^{2}{\left(x \right)} + 1\right)}{4 x^{\frac{3}{2}}} - \frac{3 \tan{\left(x \right)}}{8 x^{\frac{5}{2}}}$$