3*x - 1 --------------- (x + 2)*(x - 3)
(3*x - 1)/(((x + 2)*(x - 3)))
Apply the quotient rule, which is:
and .
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
To find :
Apply the product rule:
; to find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
; to find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
The result is:
Now plug in to the quotient rule:
The answer is:
3 (1 - 2*x)*(3*x - 1) --------------- + ------------------- (x - 3)*(x + 2) 2 2 (x - 3) *(x + 2)
/ -1 + 2*x -1 + 2*x / 1 1 \\ 6 - 12*x + (-1 + 3*x)*|-2 + -------- + -------- + (-1 + 2*x)*|------ + -----|| \ -3 + x 2 + x \-3 + x 2 + x// ------------------------------------------------------------------------------ 2 2 (-3 + x) *(2 + x)
/ / 1 1 \ / 1 1 \ \ | (-1 + 2*x)*|------ + -----| (-1 + 2*x)*|------ + -----| | | 8 8 / 1 1 1 \ 3*(-1 + 2*x) 3*(-1 + 2*x) \-3 + x 2 + x/ \-3 + x 2 + x/ 4*(-1 + 2*x) | 9*(-1 + 2*x) 9*(-1 + 2*x) / 1 1 \ -18 - (-1 + 3*x)*|- ------ - ----- + 2*(-1 + 2*x)*|--------- + -------- + ----------------| + ------------ + ------------ + --------------------------- + --------------------------- + ----------------| + ------------ + ------------ + 9*(-1 + 2*x)*|------ + -----| | -3 + x 2 + x | 2 2 (-3 + x)*(2 + x)| 2 2 -3 + x 2 + x (-3 + x)*(2 + x)| -3 + x 2 + x \-3 + x 2 + x/ \ \(-3 + x) (2 + x) / (-3 + x) (2 + x) / ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 2 2 (-3 + x) *(2 + x)