Mister Exam

Other calculators


(3x-1)/((x+2)(x-3))

Derivative of (3x-1)/((x+2)(x-3))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    3*x - 1    
---------------
(x + 2)*(x - 3)
$$\frac{3 x - 1}{\left(x - 3\right) \left(x + 2\right)}$$
(3*x - 1)/(((x + 2)*(x - 3)))
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    To find :

    1. Apply the product rule:

      ; to find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. Apply the power rule: goes to

        The result is:

      ; to find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. Apply the power rule: goes to

        The result is:

      The result is:

    Now plug in to the quotient rule:


The answer is:

The graph
The first derivative [src]
       3          (1 - 2*x)*(3*x - 1)
--------------- + -------------------
(x - 3)*(x + 2)           2        2 
                   (x - 3) *(x + 2)  
$$\frac{\left(1 - 2 x\right) \left(3 x - 1\right)}{\left(x - 3\right)^{2} \left(x + 2\right)^{2}} + \frac{3}{\left(x - 3\right) \left(x + 2\right)}$$
The second derivative [src]
                      /     -1 + 2*x   -1 + 2*x              /  1        1  \\
6 - 12*x + (-1 + 3*x)*|-2 + -------- + -------- + (-1 + 2*x)*|------ + -----||
                      \      -3 + x     2 + x                \-3 + x   2 + x//
------------------------------------------------------------------------------
                                      2        2                              
                              (-3 + x) *(2 + x)                               
$$\frac{- 12 x + \left(3 x - 1\right) \left(\left(2 x - 1\right) \left(\frac{1}{x + 2} + \frac{1}{x - 3}\right) - 2 + \frac{2 x - 1}{x + 2} + \frac{2 x - 1}{x - 3}\right) + 6}{\left(x - 3\right)^{2} \left(x + 2\right)^{2}}$$
The third derivative [src]
                 /                                                                                                                     /  1        1  \              /  1        1  \                   \                                                              
                 |                                                                                                          (-1 + 2*x)*|------ + -----|   (-1 + 2*x)*|------ + -----|                   |                                                              
                 |    8        8                  /    1          1              1        \   3*(-1 + 2*x)   3*(-1 + 2*x)              \-3 + x   2 + x/              \-3 + x   2 + x/     4*(-1 + 2*x)  |   9*(-1 + 2*x)   9*(-1 + 2*x)                /  1        1  \
-18 - (-1 + 3*x)*|- ------ - ----- + 2*(-1 + 2*x)*|--------- + -------- + ----------------| + ------------ + ------------ + --------------------------- + --------------------------- + ----------------| + ------------ + ------------ + 9*(-1 + 2*x)*|------ + -----|
                 |  -3 + x   2 + x                |        2          2   (-3 + x)*(2 + x)|            2              2                -3 + x                        2 + x              (-3 + x)*(2 + x)|      -3 + x         2 + x                    \-3 + x   2 + x/
                 \                                \(-3 + x)    (2 + x)                    /    (-3 + x)        (2 + x)                                                                                  /                                                              
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                                                   2        2                                                                                                                          
                                                                                                                           (-3 + x) *(2 + x)                                                                                                                           
$$\frac{9 \left(2 x - 1\right) \left(\frac{1}{x + 2} + \frac{1}{x - 3}\right) - \left(3 x - 1\right) \left(2 \left(2 x - 1\right) \left(\frac{1}{\left(x + 2\right)^{2}} + \frac{1}{\left(x - 3\right) \left(x + 2\right)} + \frac{1}{\left(x - 3\right)^{2}}\right) + \frac{\left(2 x - 1\right) \left(\frac{1}{x + 2} + \frac{1}{x - 3}\right)}{x + 2} - \frac{8}{x + 2} + \frac{3 \left(2 x - 1\right)}{\left(x + 2\right)^{2}} + \frac{\left(2 x - 1\right) \left(\frac{1}{x + 2} + \frac{1}{x - 3}\right)}{x - 3} - \frac{8}{x - 3} + \frac{4 \left(2 x - 1\right)}{\left(x - 3\right) \left(x + 2\right)} + \frac{3 \left(2 x - 1\right)}{\left(x - 3\right)^{2}}\right) - 18 + \frac{9 \left(2 x - 1\right)}{x + 2} + \frac{9 \left(2 x - 1\right)}{x - 3}}{\left(x - 3\right)^{2} \left(x + 2\right)^{2}}$$
The graph
Derivative of (3x-1)/((x+2)(x-3))