Detail solution
-
Apply the product rule:
; to find :
-
; to find :
-
The derivative of is .
The result is:
-
Now simplify:
The answer is:
The first derivative
[src]
x
3 x
-- + 3 *log(3)*log(x)
x
$$3^{x} \log{\left(3 \right)} \log{\left(x \right)} + \frac{3^{x}}{x}$$
The second derivative
[src]
x / 1 2 2*log(3)\
3 *|- -- + log (3)*log(x) + --------|
| 2 x |
\ x /
$$3^{x} \left(\log{\left(3 \right)}^{2} \log{\left(x \right)} + \frac{2 \log{\left(3 \right)}}{x} - \frac{1}{x^{2}}\right)$$
The third derivative
[src]
/ 2 \
x |2 3 3*log(3) 3*log (3)|
3 *|-- + log (3)*log(x) - -------- + ---------|
| 3 2 x |
\x x /
$$3^{x} \left(\log{\left(3 \right)}^{3} \log{\left(x \right)} + \frac{3 \log{\left(3 \right)}^{2}}{x} - \frac{3 \log{\left(3 \right)}}{x^{2}} + \frac{2}{x^{3}}\right)$$