Mister Exam

Derivative of 3^x*logx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 x       
3 *log(x)
$$3^{x} \log{\left(x \right)}$$
3^x*log(x)
Detail solution
  1. Apply the product rule:

    ; to find :

    ; to find :

    1. The derivative of is .

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
 x                   
3     x              
-- + 3 *log(3)*log(x)
x                    
$$3^{x} \log{\left(3 \right)} \log{\left(x \right)} + \frac{3^{x}}{x}$$
The second derivative [src]
 x /  1       2             2*log(3)\
3 *|- -- + log (3)*log(x) + --------|
   |   2                       x    |
   \  x                             /
$$3^{x} \left(\log{\left(3 \right)}^{2} \log{\left(x \right)} + \frac{2 \log{\left(3 \right)}}{x} - \frac{1}{x^{2}}\right)$$
The third derivative [src]
   /                                      2   \
 x |2       3             3*log(3)   3*log (3)|
3 *|-- + log (3)*log(x) - -------- + ---------|
   | 3                        2          x    |
   \x                        x                /
$$3^{x} \left(\log{\left(3 \right)}^{3} \log{\left(x \right)} + \frac{3 \log{\left(3 \right)}^{2}}{x} - \frac{3 \log{\left(3 \right)}}{x^{2}} + \frac{2}{x^{3}}\right)$$