Mister Exam

Other calculators

Derivative of 3^(log(x+1)/log(5))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 log(x + 1)
 ----------
   log(5)  
3          
$$3^{\frac{\log{\left(x + 1 \right)}}{\log{\left(5 \right)}}}$$
3^(log(x + 1)/log(5))
Detail solution
  1. Let .

  2. Then, apply the chain rule. Multiply by :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let .

      2. The derivative of is .

      3. Then, apply the chain rule. Multiply by :

        1. Differentiate term by term:

          1. Apply the power rule: goes to

          2. The derivative of the constant is zero.

          The result is:

        The result of the chain rule is:

      So, the result is:

    The result of the chain rule is:

  3. Now simplify:


The answer is:

The graph
The first derivative [src]
 log(x + 1)       
 ----------       
   log(5)         
3          *log(3)
------------------
  (x + 1)*log(5)  
$$\frac{3^{\frac{\log{\left(x + 1 \right)}}{\log{\left(5 \right)}}} \log{\left(3 \right)}}{\left(x + 1\right) \log{\left(5 \right)}}$$
The second derivative [src]
 log(1 + x)                     
 ----------                     
   log(5)   /     log(3)\       
3          *|-1 + ------|*log(3)
            \     log(5)/       
--------------------------------
               2                
        (1 + x) *log(5)         
$$\frac{3^{\frac{\log{\left(x + 1 \right)}}{\log{\left(5 \right)}}} \left(-1 + \frac{\log{\left(3 \right)}}{\log{\left(5 \right)}}\right) \log{\left(3 \right)}}{\left(x + 1\right)^{2} \log{\left(5 \right)}}$$
The third derivative [src]
 log(1 + x)                                
 ---------- /       2              \       
   log(5)   |    log (3)   3*log(3)|       
3          *|2 + ------- - --------|*log(3)
            |       2       log(5) |       
            \    log (5)           /       
-------------------------------------------
                     3                     
              (1 + x) *log(5)              
$$\frac{3^{\frac{\log{\left(x + 1 \right)}}{\log{\left(5 \right)}}} \left(- \frac{3 \log{\left(3 \right)}}{\log{\left(5 \right)}} + \frac{\log{\left(3 \right)}^{2}}{\log{\left(5 \right)}^{2}} + 2\right) \log{\left(3 \right)}}{\left(x + 1\right)^{3} \log{\left(5 \right)}}$$