Mister Exam

Other calculators


2^x*x^2

Derivative of 2^x*x^2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 x  2
2 *x 
$$2^{x} x^{2}$$
2^x*x^2
Detail solution
  1. Apply the product rule:

    ; to find :

    ; to find :

    1. Apply the power rule: goes to

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
     x    x  2       
2*x*2  + 2 *x *log(2)
$$2^{x} x^{2} \log{\left(2 \right)} + 2 \cdot 2^{x} x$$
The second derivative [src]
 x /     2    2                \
2 *\2 + x *log (2) + 4*x*log(2)/
$$2^{x} \left(x^{2} \log{\left(2 \right)}^{2} + 4 x \log{\left(2 \right)} + 2\right)$$
The third derivative [src]
 x /     2    2                \       
2 *\6 + x *log (2) + 6*x*log(2)/*log(2)
$$2^{x} \left(x^{2} \log{\left(2 \right)}^{2} + 6 x \log{\left(2 \right)} + 6\right) \log{\left(2 \right)}$$
The graph
Derivative of 2^x*x^2