Mister Exam

Other calculators


(3*log(x))/sqrt(x)

Derivative of (3*log(x))/sqrt(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
3*log(x)
--------
   ___  
 \/ x   
$$\frac{3 \log{\left(x \right)}}{\sqrt{x}}$$
d /3*log(x)\
--|--------|
dx|   ___  |
  \ \/ x   /
$$\frac{d}{d x} \frac{3 \log{\left(x \right)}}{\sqrt{x}}$$
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Apply the quotient rule, which is:

      and .

      To find :

      1. The derivative of is .

      To find :

      1. Apply the power rule: goes to

      Now plug in to the quotient rule:

    So, the result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   3      3*log(x)
------- - --------
    ___       3/2 
x*\/ x     2*x    
$$\frac{3}{\sqrt{x} x} - \frac{3 \log{\left(x \right)}}{2 x^{\frac{3}{2}}}$$
The second derivative [src]
  /     3*log(x)\
3*|-2 + --------|
  \        4    /
-----------------
        5/2      
       x         
$$\frac{3 \cdot \left(\frac{3 \log{\left(x \right)}}{4} - 2\right)}{x^{\frac{5}{2}}}$$
The third derivative [src]
3*(46 - 15*log(x))
------------------
         7/2      
      8*x         
$$\frac{3 \cdot \left(46 - 15 \log{\left(x \right)}\right)}{8 x^{\frac{7}{2}}}$$
The graph
Derivative of (3*log(x))/sqrt(x)