Mister Exam

Other calculators


(3*log(x))/sqrt(x)

Derivative of (3*log(x))/sqrt(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
3*log(x)
--------
   ___  
 \/ x   
3log(x)x\frac{3 \log{\left(x \right)}}{\sqrt{x}}
d /3*log(x)\
--|--------|
dx|   ___  |
  \ \/ x   /
ddx3log(x)x\frac{d}{d x} \frac{3 \log{\left(x \right)}}{\sqrt{x}}
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Apply the quotient rule, which is:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

      f(x)=log(x)f{\left(x \right)} = \log{\left(x \right)} and g(x)=xg{\left(x \right)} = \sqrt{x}.

      To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. The derivative of log(x)\log{\left(x \right)} is 1x\frac{1}{x}.

      To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. Apply the power rule: x\sqrt{x} goes to 12x\frac{1}{2 \sqrt{x}}

      Now plug in to the quotient rule:

      log(x)2x+1xx\frac{- \frac{\log{\left(x \right)}}{2 \sqrt{x}} + \frac{1}{\sqrt{x}}}{x}

    So, the result is: 3(log(x)2x+1x)x\frac{3 \left(- \frac{\log{\left(x \right)}}{2 \sqrt{x}} + \frac{1}{\sqrt{x}}\right)}{x}

  2. Now simplify:

    3(2log(x))2x32\frac{3 \cdot \left(2 - \log{\left(x \right)}\right)}{2 x^{\frac{3}{2}}}


The answer is:

3(2log(x))2x32\frac{3 \cdot \left(2 - \log{\left(x \right)}\right)}{2 x^{\frac{3}{2}}}

The graph
02468-8-6-4-2-1010-250250
The first derivative [src]
   3      3*log(x)
------- - --------
    ___       3/2 
x*\/ x     2*x    
3xx3log(x)2x32\frac{3}{\sqrt{x} x} - \frac{3 \log{\left(x \right)}}{2 x^{\frac{3}{2}}}
The second derivative [src]
  /     3*log(x)\
3*|-2 + --------|
  \        4    /
-----------------
        5/2      
       x         
3(3log(x)42)x52\frac{3 \cdot \left(\frac{3 \log{\left(x \right)}}{4} - 2\right)}{x^{\frac{5}{2}}}
The third derivative [src]
3*(46 - 15*log(x))
------------------
         7/2      
      8*x         
3(4615log(x))8x72\frac{3 \cdot \left(46 - 15 \log{\left(x \right)}\right)}{8 x^{\frac{7}{2}}}
The graph
Derivative of (3*log(x))/sqrt(x)