Mister Exam

Other calculators


(3-4*x^2)/(x+2)

Derivative of (3-4*x^2)/(x+2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
       2
3 - 4*x 
--------
 x + 2  
$$\frac{3 - 4 x^{2}}{x + 2}$$
  /       2\
d |3 - 4*x |
--|--------|
dx\ x + 2  /
$$\frac{d}{d x} \frac{3 - 4 x^{2}}{x + 2}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the power rule: goes to

      The result is:

    Now plug in to the quotient rule:


The answer is:

The graph
The first derivative [src]
         2        
  3 - 4*x     8*x 
- -------- - -----
         2   x + 2
  (x + 2)         
$$- \frac{8 x}{x + 2} - \frac{3 - 4 x^{2}}{\left(x + 2\right)^{2}}$$
The second derivative [src]
  /             2        \
  |     -3 + 4*x     8*x |
2*|-4 - --------- + -----|
  |             2   2 + x|
  \      (2 + x)         /
--------------------------
          2 + x           
$$\frac{2 \cdot \left(\frac{8 x}{x + 2} - 4 - \frac{4 x^{2} - 3}{\left(x + 2\right)^{2}}\right)}{x + 2}$$
3-я производная [src]
  /            2        \
  |    -3 + 4*x     8*x |
6*|4 + --------- - -----|
  |            2   2 + x|
  \     (2 + x)         /
-------------------------
                2        
         (2 + x)         
$$\frac{6 \left(- \frac{8 x}{x + 2} + 4 + \frac{4 x^{2} - 3}{\left(x + 2\right)^{2}}\right)}{\left(x + 2\right)^{2}}$$
The third derivative [src]
  /            2        \
  |    -3 + 4*x     8*x |
6*|4 + --------- - -----|
  |            2   2 + x|
  \     (2 + x)         /
-------------------------
                2        
         (2 + x)         
$$\frac{6 \left(- \frac{8 x}{x + 2} + 4 + \frac{4 x^{2} - 3}{\left(x + 2\right)^{2}}\right)}{\left(x + 2\right)^{2}}$$
The graph
Derivative of (3-4*x^2)/(x+2)