The second derivative
[src]
/ 2*x asin(4*x) \
96*|-------------- + -----------------------------|
| 3/2 / 2 \ / 2\|
|/ 2\ \1 + asin (4*x)/*\-1 + 16*x /|
\\1 - 16*x / /
---------------------------------------------------
2
1 + asin (4*x)
$$\frac{96 \left(\frac{2 x}{\left(1 - 16 x^{2}\right)^{\frac{3}{2}}} + \frac{\operatorname{asin}{\left(4 x \right)}}{\left(16 x^{2} - 1\right) \left(\operatorname{asin}^{2}{\left(4 x \right)} + 1\right)}\right)}{\operatorname{asin}^{2}{\left(4 x \right)} + 1}$$
The third derivative
[src]
/ 2 2 \
| 1 2 48*x 8*asin (4*x) 24*x*asin(4*x) |
192*|-------------- - ------------------------------- + -------------- + -------------------------------- - ------------------------------|
| 3/2 3/2 5/2 2 3/2 2|
|/ 2\ / 2 \ / 2\ / 2\ / 2 \ / 2\ / 2 \ / 2\ |
\\1 - 16*x / \1 + asin (4*x)/*\1 - 16*x / \1 - 16*x / \1 + asin (4*x)/ *\1 - 16*x / \1 + asin (4*x)/*\-1 + 16*x / /
-------------------------------------------------------------------------------------------------------------------------------------------
2
1 + asin (4*x)
$$\frac{192 \left(\frac{48 x^{2}}{\left(1 - 16 x^{2}\right)^{\frac{5}{2}}} - \frac{24 x \operatorname{asin}{\left(4 x \right)}}{\left(16 x^{2} - 1\right)^{2} \left(\operatorname{asin}^{2}{\left(4 x \right)} + 1\right)} + \frac{1}{\left(1 - 16 x^{2}\right)^{\frac{3}{2}}} - \frac{2}{\left(1 - 16 x^{2}\right)^{\frac{3}{2}} \left(\operatorname{asin}^{2}{\left(4 x \right)} + 1\right)} + \frac{8 \operatorname{asin}^{2}{\left(4 x \right)}}{\left(1 - 16 x^{2}\right)^{\frac{3}{2}} \left(\operatorname{asin}^{2}{\left(4 x \right)} + 1\right)^{2}}\right)}{\operatorname{asin}^{2}{\left(4 x \right)} + 1}$$