Mister Exam

Derivative of 3(arctg(arcsin(4x)))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
3*atan(asin(4*x))
$$3 \operatorname{atan}{\left(\operatorname{asin}{\left(4 x \right)} \right)}$$
3*atan(asin(4*x))
The graph
The first derivative [src]
               12              
-------------------------------
                    ___________
/        2     \   /         2 
\1 + asin (4*x)/*\/  1 - 16*x  
$$\frac{12}{\sqrt{1 - 16 x^{2}} \left(\operatorname{asin}^{2}{\left(4 x \right)} + 1\right)}$$
The second derivative [src]
   /     2*x                   asin(4*x)          \
96*|-------------- + -----------------------------|
   |           3/2   /        2     \ /         2\|
   |/        2\      \1 + asin (4*x)/*\-1 + 16*x /|
   \\1 - 16*x /                                   /
---------------------------------------------------
                           2                       
                   1 + asin (4*x)                  
$$\frac{96 \left(\frac{2 x}{\left(1 - 16 x^{2}\right)^{\frac{3}{2}}} + \frac{\operatorname{asin}{\left(4 x \right)}}{\left(16 x^{2} - 1\right) \left(\operatorname{asin}^{2}{\left(4 x \right)} + 1\right)}\right)}{\operatorname{asin}^{2}{\left(4 x \right)} + 1}$$
The third derivative [src]
    /                                                           2                        2                                                \
    |      1                         2                      48*x                   8*asin (4*x)                     24*x*asin(4*x)        |
192*|-------------- - ------------------------------- + -------------- + -------------------------------- - ------------------------------|
    |           3/2                               3/2              5/2                   2            3/2                                2|
    |/        2\      /        2     \ /        2\      /        2\      /        2     \  /        2\      /        2     \ /         2\ |
    \\1 - 16*x /      \1 + asin (4*x)/*\1 - 16*x /      \1 - 16*x /      \1 + asin (4*x)/ *\1 - 16*x /      \1 + asin (4*x)/*\-1 + 16*x / /
-------------------------------------------------------------------------------------------------------------------------------------------
                                                                       2                                                                   
                                                               1 + asin (4*x)                                                              
$$\frac{192 \left(\frac{48 x^{2}}{\left(1 - 16 x^{2}\right)^{\frac{5}{2}}} - \frac{24 x \operatorname{asin}{\left(4 x \right)}}{\left(16 x^{2} - 1\right)^{2} \left(\operatorname{asin}^{2}{\left(4 x \right)} + 1\right)} + \frac{1}{\left(1 - 16 x^{2}\right)^{\frac{3}{2}}} - \frac{2}{\left(1 - 16 x^{2}\right)^{\frac{3}{2}} \left(\operatorname{asin}^{2}{\left(4 x \right)} + 1\right)} + \frac{8 \operatorname{asin}^{2}{\left(4 x \right)}}{\left(1 - 16 x^{2}\right)^{\frac{3}{2}} \left(\operatorname{asin}^{2}{\left(4 x \right)} + 1\right)^{2}}\right)}{\operatorname{asin}^{2}{\left(4 x \right)} + 1}$$