tan(x) + 1 ---------- tan(x) - 1
d /tan(x) + 1\ --|----------| dx\tan(x) - 1/
Apply the quotient rule, which is:
and .
To find :
Differentiate term by term:
The derivative of the constant is zero.
Rewrite the function to be differentiated:
Apply the quotient rule, which is:
and .
To find :
The derivative of sine is cosine:
To find :
The derivative of cosine is negative sine:
Now plug in to the quotient rule:
The result is:
To find :
Differentiate term by term:
The derivative of the constant is zero.
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
2 / 2 \ 1 + tan (x) \-1 - tan (x)/*(tan(x) + 1) ----------- + --------------------------- tan(x) - 1 2 (tan(x) - 1)
/ / 2 \ \ | | 1 + tan (x) | | | 2 (1 + tan(x))*|- ----------- + tan(x)| | / 2 \ | 1 + tan (x) \ -1 + tan(x) / | 2*\1 + tan (x)/*|- ----------- - ------------------------------------- + tan(x)| \ -1 + tan(x) -1 + tan(x) / -------------------------------------------------------------------------------- -1 + tan(x)
/ / 2 \ \ | | / 2 \ / 2 \ | | | | 2 3*\1 + tan (x)/ 6*\1 + tan (x)/*tan(x)| / 2 \ | | (1 + tan(x))*|1 + 3*tan (x) + ---------------- - ----------------------| / 2 \ | 1 + tan (x) | | | | 2 -1 + tan(x) | 3*\1 + tan (x)/*|- ----------- + tan(x)| / 2 \ | / 2 \ | 2 \ (-1 + tan(x)) / \ -1 + tan(x) / 3*\1 + tan (x)/*tan(x)| 2*\1 + tan (x)/*|1 + 3*tan (x) - ------------------------------------------------------------------------ - ---------------------------------------- - ----------------------| \ -1 + tan(x) -1 + tan(x) -1 + tan(x) / ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ -1 + tan(x)