Mister Exam

Derivative of (tgx+1)/(tgx-1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
tan(x) + 1
----------
tan(x) - 1
$$\frac{\tan{\left(x \right)} + 1}{\tan{\left(x \right)} - 1}$$
d /tan(x) + 1\
--|----------|
dx\tan(x) - 1/
$$\frac{d}{d x} \frac{\tan{\left(x \right)} + 1}{\tan{\left(x \right)} - 1}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Rewrite the function to be differentiated:

      3. Apply the quotient rule, which is:

        and .

        To find :

        1. The derivative of sine is cosine:

        To find :

        1. The derivative of cosine is negative sine:

        Now plug in to the quotient rule:

      The result is:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
       2      /        2   \             
1 + tan (x)   \-1 - tan (x)/*(tan(x) + 1)
----------- + ---------------------------
 tan(x) - 1                      2       
                     (tan(x) - 1)        
$$\frac{\left(\tan{\left(x \right)} + 1\right) \left(- \tan^{2}{\left(x \right)} - 1\right)}{\left(\tan{\left(x \right)} - 1\right)^{2}} + \frac{\tan^{2}{\left(x \right)} + 1}{\tan{\left(x \right)} - 1}$$
The second derivative [src]
                /                             /         2            \         \
                |                             |  1 + tan (x)         |         |
                |         2      (1 + tan(x))*|- ----------- + tan(x)|         |
  /       2   \ |  1 + tan (x)                \  -1 + tan(x)         /         |
2*\1 + tan (x)/*|- ----------- - ------------------------------------- + tan(x)|
                \  -1 + tan(x)                -1 + tan(x)                      /
--------------------------------------------------------------------------------
                                  -1 + tan(x)                                   
$$\frac{2 \left(\tan^{2}{\left(x \right)} + 1\right) \left(\tan{\left(x \right)} - \frac{\left(\tan{\left(x \right)} + 1\right) \left(\tan{\left(x \right)} - \frac{\tan^{2}{\left(x \right)} + 1}{\tan{\left(x \right)} - 1}\right)}{\tan{\left(x \right)} - 1} - \frac{\tan^{2}{\left(x \right)} + 1}{\tan{\left(x \right)} - 1}\right)}{\tan{\left(x \right)} - 1}$$
The third derivative [src]
                /                             /                               2                         \                                                                    \
                |                             |                  /       2   \      /       2   \       |                                                                    |
                |                             |         2      3*\1 + tan (x)/    6*\1 + tan (x)/*tan(x)|                   /         2            \                         |
                |                (1 + tan(x))*|1 + 3*tan (x) + ---------------- - ----------------------|     /       2   \ |  1 + tan (x)         |                         |
                |                             |                              2         -1 + tan(x)      |   3*\1 + tan (x)/*|- ----------- + tan(x)|     /       2   \       |
  /       2   \ |         2                   \                 (-1 + tan(x))                           /                   \  -1 + tan(x)         /   3*\1 + tan (x)/*tan(x)|
2*\1 + tan (x)/*|1 + 3*tan (x) - ------------------------------------------------------------------------ - ---------------------------------------- - ----------------------|
                \                                              -1 + tan(x)                                                -1 + tan(x)                       -1 + tan(x)      /
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                 -1 + tan(x)                                                                                  
$$\frac{2 \left(\tan^{2}{\left(x \right)} + 1\right) \left(3 \tan^{2}{\left(x \right)} - \frac{\left(\tan{\left(x \right)} + 1\right) \left(3 \tan^{2}{\left(x \right)} - \frac{6 \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)}}{\tan{\left(x \right)} - 1} + 1 + \frac{3 \left(\tan^{2}{\left(x \right)} + 1\right)^{2}}{\left(\tan{\left(x \right)} - 1\right)^{2}}\right)}{\tan{\left(x \right)} - 1} - \frac{3 \left(\tan{\left(x \right)} - \frac{\tan^{2}{\left(x \right)} + 1}{\tan{\left(x \right)} - 1}\right) \left(\tan^{2}{\left(x \right)} + 1\right)}{\tan{\left(x \right)} - 1} - \frac{3 \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)}}{\tan{\left(x \right)} - 1} + 1\right)}{\tan{\left(x \right)} - 1}$$
The graph
Derivative of (tgx+1)/(tgx-1)