tan(x) + 1 ---------- tan(x) - 1
d /tan(x) + 1\ --|----------| dx\tan(x) - 1/
Apply the quotient rule, which is:
and .
To find :
Differentiate term by term:
The derivative of the constant is zero.
Rewrite the function to be differentiated:
Apply the quotient rule, which is:
and .
To find :
The derivative of sine is cosine:
To find :
The derivative of cosine is negative sine:
Now plug in to the quotient rule:
The result is:
To find :
Differentiate term by term:
The derivative of the constant is zero.
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
2 / 2 \
1 + tan (x) \-1 - tan (x)/*(tan(x) + 1)
----------- + ---------------------------
tan(x) - 1 2
(tan(x) - 1)
/ / 2 \ \
| | 1 + tan (x) | |
| 2 (1 + tan(x))*|- ----------- + tan(x)| |
/ 2 \ | 1 + tan (x) \ -1 + tan(x) / |
2*\1 + tan (x)/*|- ----------- - ------------------------------------- + tan(x)|
\ -1 + tan(x) -1 + tan(x) /
--------------------------------------------------------------------------------
-1 + tan(x)
/ / 2 \ \
| | / 2 \ / 2 \ | |
| | 2 3*\1 + tan (x)/ 6*\1 + tan (x)/*tan(x)| / 2 \ |
| (1 + tan(x))*|1 + 3*tan (x) + ---------------- - ----------------------| / 2 \ | 1 + tan (x) | |
| | 2 -1 + tan(x) | 3*\1 + tan (x)/*|- ----------- + tan(x)| / 2 \ |
/ 2 \ | 2 \ (-1 + tan(x)) / \ -1 + tan(x) / 3*\1 + tan (x)/*tan(x)|
2*\1 + tan (x)/*|1 + 3*tan (x) - ------------------------------------------------------------------------ - ---------------------------------------- - ----------------------|
\ -1 + tan(x) -1 + tan(x) -1 + tan(x) /
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
-1 + tan(x)