tan(x) ------ - cos(x) sin(x)
tan(x)/sin(x) - cos(x)
Differentiate term by term:
Apply the quotient rule, which is:
and .
To find :
Rewrite the function to be differentiated:
Apply the quotient rule, which is:
and .
To find :
The derivative of sine is cosine:
To find :
The derivative of cosine is negative sine:
Now plug in to the quotient rule:
To find :
The derivative of sine is cosine:
Now plug in to the quotient rule:
The derivative of a constant times a function is the constant times the derivative of the function.
The derivative of cosine is negative sine:
So, the result is:
The result is:
Now simplify:
The answer is:
2 1 + tan (x) cos(x)*tan(x) ----------- - ------------- + sin(x) sin(x) 2 sin (x)
/ 2 \ 2 / 2 \ tan(x) 2*\1 + tan (x)/*cos(x) 2*cos (x)*tan(x) 2*\1 + tan (x)/*tan(x) ------ - ---------------------- + ---------------- + ---------------------- + cos(x) sin(x) 2 3 sin(x) sin (x) sin (x)
2 / 2 \ / 2 \ 3 2 / 2 \ 2 / 2 \ / 2 \ 2*\1 + tan (x)/ 3*\1 + tan (x)/ 6*cos (x)*tan(x) 5*cos(x)*tan(x) 4*tan (x)*\1 + tan (x)/ 6*cos (x)*\1 + tan (x)/ 6*\1 + tan (x)/*cos(x)*tan(x) -sin(x) + ---------------- + --------------- - ---------------- - --------------- + ----------------------- + ----------------------- - ----------------------------- sin(x) sin(x) 4 2 sin(x) 3 2 sin (x) sin (x) sin (x) sin (x)