Mister Exam

Derivative of y=tgx/sinx-cosx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
tan(x)         
------ - cos(x)
sin(x)         
$$- \cos{\left(x \right)} + \frac{\tan{\left(x \right)}}{\sin{\left(x \right)}}$$
tan(x)/sin(x) - cos(x)
Detail solution
  1. Differentiate term by term:

    1. Apply the quotient rule, which is:

      and .

      To find :

      1. Rewrite the function to be differentiated:

      2. Apply the quotient rule, which is:

        and .

        To find :

        1. The derivative of sine is cosine:

        To find :

        1. The derivative of cosine is negative sine:

        Now plug in to the quotient rule:

      To find :

      1. The derivative of sine is cosine:

      Now plug in to the quotient rule:

    2. The derivative of a constant times a function is the constant times the derivative of the function.

      1. The derivative of cosine is negative sine:

      So, the result is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
       2                            
1 + tan (x)   cos(x)*tan(x)         
----------- - ------------- + sin(x)
   sin(x)           2               
                 sin (x)            
$$\frac{\tan^{2}{\left(x \right)} + 1}{\sin{\left(x \right)}} + \sin{\left(x \right)} - \frac{\cos{\left(x \right)} \tan{\left(x \right)}}{\sin^{2}{\left(x \right)}}$$
The second derivative [src]
           /       2   \               2               /       2   \                
tan(x)   2*\1 + tan (x)/*cos(x)   2*cos (x)*tan(x)   2*\1 + tan (x)/*tan(x)         
------ - ---------------------- + ---------------- + ---------------------- + cos(x)
sin(x)             2                     3                   sin(x)                 
                sin (x)               sin (x)                                       
$$\frac{2 \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)}}{\sin{\left(x \right)}} - \frac{2 \left(\tan^{2}{\left(x \right)} + 1\right) \cos{\left(x \right)}}{\sin^{2}{\left(x \right)}} + \cos{\left(x \right)} + \frac{\tan{\left(x \right)}}{\sin{\left(x \right)}} + \frac{2 \cos^{2}{\left(x \right)} \tan{\left(x \right)}}{\sin^{3}{\left(x \right)}}$$
The third derivative [src]
                         2                                                                                                                                           
            /       2   \      /       2   \        3                                    2    /       2   \        2    /       2   \     /       2   \              
          2*\1 + tan (x)/    3*\1 + tan (x)/   6*cos (x)*tan(x)   5*cos(x)*tan(x)   4*tan (x)*\1 + tan (x)/   6*cos (x)*\1 + tan (x)/   6*\1 + tan (x)/*cos(x)*tan(x)
-sin(x) + ---------------- + --------------- - ---------------- - --------------- + ----------------------- + ----------------------- - -----------------------------
               sin(x)             sin(x)              4                  2                   sin(x)                      3                            2              
                                                   sin (x)            sin (x)                                         sin (x)                      sin (x)           
$$\frac{2 \left(\tan^{2}{\left(x \right)} + 1\right)^{2}}{\sin{\left(x \right)}} + \frac{4 \left(\tan^{2}{\left(x \right)} + 1\right) \tan^{2}{\left(x \right)}}{\sin{\left(x \right)}} + \frac{3 \left(\tan^{2}{\left(x \right)} + 1\right)}{\sin{\left(x \right)}} - \frac{6 \left(\tan^{2}{\left(x \right)} + 1\right) \cos{\left(x \right)} \tan{\left(x \right)}}{\sin^{2}{\left(x \right)}} + \frac{6 \left(\tan^{2}{\left(x \right)} + 1\right) \cos^{2}{\left(x \right)}}{\sin^{3}{\left(x \right)}} - \sin{\left(x \right)} - \frac{5 \cos{\left(x \right)} \tan{\left(x \right)}}{\sin^{2}{\left(x \right)}} - \frac{6 \cos^{3}{\left(x \right)} \tan{\left(x \right)}}{\sin^{4}{\left(x \right)}}$$
The graph
Derivative of y=tgx/sinx-cosx