Mister Exam

Other calculators

Derivative of (tg(logx))/(sin(logx)+5)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  tan(log(x))  
---------------
sin(log(x)) + 5
$$\frac{\tan{\left(\log{\left(x \right)} \right)}}{\sin{\left(\log{\left(x \right)} \right)} + 5}$$
tan(log(x))/(sin(log(x)) + 5)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Rewrite the function to be differentiated:

    2. Apply the quotient rule, which is:

      and .

      To find :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of is .

        The result of the chain rule is:

      To find :

      1. Let .

      2. The derivative of cosine is negative sine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of is .

        The result of the chain rule is:

      Now plug in to the quotient rule:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Let .

      3. The derivative of sine is cosine:

      4. Then, apply the chain rule. Multiply by :

        1. The derivative of is .

        The result of the chain rule is:

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
         2                                   
  1 + tan (log(x))    cos(log(x))*tan(log(x))
------------------- - -----------------------
x*(sin(log(x)) + 5)                        2 
                        x*(sin(log(x)) + 5)  
$$\frac{\tan^{2}{\left(\log{\left(x \right)} \right)} + 1}{x \left(\sin{\left(\log{\left(x \right)} \right)} + 5\right)} - \frac{\cos{\left(\log{\left(x \right)} \right)} \tan{\left(\log{\left(x \right)} \right)}}{x \left(\sin{\left(\log{\left(x \right)} \right)} + 5\right)^{2}}$$
The second derivative [src]
                                          /      2                                    \                                               
                                          | 2*cos (log(x))                            |                                               
                                          |--------------- + cos(log(x)) + sin(log(x))|*tan(log(x))     /       2        \            
/       2        \                        \5 + sin(log(x))                            /               2*\1 + tan (log(x))/*cos(log(x))
\1 + tan (log(x))/*(-1 + 2*tan(log(x))) + --------------------------------------------------------- - --------------------------------
                                                               5 + sin(log(x))                                5 + sin(log(x))         
--------------------------------------------------------------------------------------------------------------------------------------
                                                          2                                                                           
                                                         x *(5 + sin(log(x)))                                                         
$$\frac{\left(2 \tan{\left(\log{\left(x \right)} \right)} - 1\right) \left(\tan^{2}{\left(\log{\left(x \right)} \right)} + 1\right) - \frac{2 \left(\tan^{2}{\left(\log{\left(x \right)} \right)} + 1\right) \cos{\left(\log{\left(x \right)} \right)}}{\sin{\left(\log{\left(x \right)} \right)} + 5} + \frac{\left(\sin{\left(\log{\left(x \right)} \right)} + \cos{\left(\log{\left(x \right)} \right)} + \frac{2 \cos^{2}{\left(\log{\left(x \right)} \right)}}{\sin{\left(\log{\left(x \right)} \right)} + 5}\right) \tan{\left(\log{\left(x \right)} \right)}}{\sin{\left(\log{\left(x \right)} \right)} + 5}}{x^{2} \left(\sin{\left(\log{\left(x \right)} \right)} + 5\right)}$$
The third derivative [src]
                                                            /                      2                  3                                                    \                                                                                                                                         
                                                            |                 6*cos (log(x))     6*cos (log(x))     6*cos(log(x))*sin(log(x))              |                                    /      2                                    \                                                        
                                                            |3*sin(log(x)) + --------------- + ------------------ + ------------------------- + cos(log(x))|*tan(log(x))     /       2        \ | 2*cos (log(x))                            |                                                        
                                                            |                5 + sin(log(x))                    2        5 + sin(log(x))                   |               3*\1 + tan (log(x))/*|--------------- + cos(log(x)) + sin(log(x))|     /       2        \                                 
  /       2        \ /                         2        \   \                                  (5 + sin(log(x)))                                           /                                    \5 + sin(log(x))                            /   3*\1 + tan (log(x))/*(-1 + 2*tan(log(x)))*cos(log(x))
2*\1 + tan (log(x))/*\2 - 3*tan(log(x)) + 3*tan (log(x))/ - ------------------------------------------------------------------------------------------------------------ + ------------------------------------------------------------------ - -----------------------------------------------------
                                                                                                          5 + sin(log(x))                                                                           5 + sin(log(x))                                                5 + sin(log(x))                   
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                                                          3                                                                                                                                                          
                                                                                                                                         x *(5 + sin(log(x)))                                                                                                                                        
$$\frac{2 \left(\tan^{2}{\left(\log{\left(x \right)} \right)} + 1\right) \left(3 \tan^{2}{\left(\log{\left(x \right)} \right)} - 3 \tan{\left(\log{\left(x \right)} \right)} + 2\right) - \frac{3 \left(2 \tan{\left(\log{\left(x \right)} \right)} - 1\right) \left(\tan^{2}{\left(\log{\left(x \right)} \right)} + 1\right) \cos{\left(\log{\left(x \right)} \right)}}{\sin{\left(\log{\left(x \right)} \right)} + 5} + \frac{3 \left(\tan^{2}{\left(\log{\left(x \right)} \right)} + 1\right) \left(\sin{\left(\log{\left(x \right)} \right)} + \cos{\left(\log{\left(x \right)} \right)} + \frac{2 \cos^{2}{\left(\log{\left(x \right)} \right)}}{\sin{\left(\log{\left(x \right)} \right)} + 5}\right)}{\sin{\left(\log{\left(x \right)} \right)} + 5} - \frac{\left(3 \sin{\left(\log{\left(x \right)} \right)} + \cos{\left(\log{\left(x \right)} \right)} + \frac{6 \sin{\left(\log{\left(x \right)} \right)} \cos{\left(\log{\left(x \right)} \right)}}{\sin{\left(\log{\left(x \right)} \right)} + 5} + \frac{6 \cos^{2}{\left(\log{\left(x \right)} \right)}}{\sin{\left(\log{\left(x \right)} \right)} + 5} + \frac{6 \cos^{3}{\left(\log{\left(x \right)} \right)}}{\left(\sin{\left(\log{\left(x \right)} \right)} + 5\right)^{2}}\right) \tan{\left(\log{\left(x \right)} \right)}}{\sin{\left(\log{\left(x \right)} \right)} + 5}}{x^{3} \left(\sin{\left(\log{\left(x \right)} \right)} + 5\right)}$$