Mister Exam

Other calculators

Derivative of tg(log2(4x^3-3))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   /   3    \\
   |log\4*x  - 3/|
tan|-------------|
   \    log(2)   /
$$\tan{\left(\frac{\log{\left(4 x^{3} - 3 \right)}}{\log{\left(2 \right)}} \right)}$$
tan(log(4*x^3 - 3)/log(2))
Detail solution
  1. Rewrite the function to be differentiated:

  2. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Let .

        2. The derivative of is .

        3. Then, apply the chain rule. Multiply by :

          1. Differentiate term by term:

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: goes to

              So, the result is:

            2. The derivative of the constant is zero.

            The result is:

          The result of the chain rule is:

        So, the result is:

      The result of the chain rule is:

    To find :

    1. Let .

    2. The derivative of cosine is negative sine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Let .

        2. The derivative of is .

        3. Then, apply the chain rule. Multiply by :

          1. Differentiate term by term:

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: goes to

              So, the result is:

            2. The derivative of the constant is zero.

            The result is:

          The result of the chain rule is:

        So, the result is:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  3. Now simplify:


The answer is:

The graph
The first derivative [src]
      /        /   /   3    \\\
    2 |       2|log\4*x  - 3/||
12*x *|1 + tan |-------------||
      \        \    log(2)   //
-------------------------------
       /   3    \              
       \4*x  - 3/*log(2)       
$$\frac{12 x^{2} \left(\tan^{2}{\left(\frac{\log{\left(4 x^{3} - 3 \right)}}{\log{\left(2 \right)}} \right)} + 1\right)}{\left(4 x^{3} - 3\right) \log{\left(2 \right)}}$$
The second derivative [src]
                                /                         /   /        3\\\
                                |                    3    |log\-3 + 4*x /||
     /        /   /        3\\\ |          3     12*x *tan|--------------||
     |       2|log\-3 + 4*x /|| |       6*x               \    log(2)    /|
24*x*|1 + tan |--------------||*|1 - --------- + -------------------------|
     \        \    log(2)    // |            3       /        3\          |
                                \    -3 + 4*x        \-3 + 4*x /*log(2)   /
---------------------------------------------------------------------------
                             /        3\                                   
                             \-3 + 4*x /*log(2)                            
$$\frac{24 x \left(\tan^{2}{\left(\frac{\log{\left(4 x^{3} - 3 \right)}}{\log{\left(2 \right)}} \right)} + 1\right) \left(\frac{12 x^{3} \tan{\left(\frac{\log{\left(4 x^{3} - 3 \right)}}{\log{\left(2 \right)}} \right)}}{\left(4 x^{3} - 3\right) \log{\left(2 \right)}} - \frac{6 x^{3}}{4 x^{3} - 3} + 1\right)}{\left(4 x^{3} - 3\right) \log{\left(2 \right)}}$$
The third derivative [src]
                              /                                         /   /        3\\            /   /        3\\          /        /   /        3\\\              /   /        3\\\
                              |                                    6    |log\-3 + 4*x /|       3    |log\-3 + 4*x /|        6 |       2|log\-3 + 4*x /||        6    2|log\-3 + 4*x /||
   /        /   /        3\\\ |          3             6      432*x *tan|--------------|   72*x *tan|--------------|   144*x *|1 + tan |--------------||   288*x *tan |--------------||
   |       2|log\-3 + 4*x /|| |      36*x         144*x                 \    log(2)    /            \    log(2)    /          \        \    log(2)    //              \    log(2)    /|
24*|1 + tan |--------------||*|1 - --------- + ------------ - -------------------------- + ------------------------- + --------------------------------- + ---------------------------|
   \        \    log(2)    // |            3              2                 2                  /        3\                               2                                2           |
                              |    -3 + 4*x    /        3\       /        3\                   \-3 + 4*x /*log(2)             /        3\     2                /        3\     2      |
                              \                \-3 + 4*x /       \-3 + 4*x / *log(2)                                          \-3 + 4*x / *log (2)             \-3 + 4*x / *log (2)   /
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                   /        3\                                                                                         
                                                                                   \-3 + 4*x /*log(2)                                                                                  
$$\frac{24 \left(\tan^{2}{\left(\frac{\log{\left(4 x^{3} - 3 \right)}}{\log{\left(2 \right)}} \right)} + 1\right) \left(\frac{144 x^{6} \left(\tan^{2}{\left(\frac{\log{\left(4 x^{3} - 3 \right)}}{\log{\left(2 \right)}} \right)} + 1\right)}{\left(4 x^{3} - 3\right)^{2} \log{\left(2 \right)}^{2}} + \frac{288 x^{6} \tan^{2}{\left(\frac{\log{\left(4 x^{3} - 3 \right)}}{\log{\left(2 \right)}} \right)}}{\left(4 x^{3} - 3\right)^{2} \log{\left(2 \right)}^{2}} - \frac{432 x^{6} \tan{\left(\frac{\log{\left(4 x^{3} - 3 \right)}}{\log{\left(2 \right)}} \right)}}{\left(4 x^{3} - 3\right)^{2} \log{\left(2 \right)}} + \frac{144 x^{6}}{\left(4 x^{3} - 3\right)^{2}} + \frac{72 x^{3} \tan{\left(\frac{\log{\left(4 x^{3} - 3 \right)}}{\log{\left(2 \right)}} \right)}}{\left(4 x^{3} - 3\right) \log{\left(2 \right)}} - \frac{36 x^{3}}{4 x^{3} - 3} + 1\right)}{\left(4 x^{3} - 3\right) \log{\left(2 \right)}}$$