Mister Exam

Derivative of tg(ln^3x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   3   \
tan\log (x)/
$$\tan{\left(\log{\left(x \right)}^{3} \right)}$$
d /   /   3   \\
--\tan\log (x)//
dx              
$$\frac{d}{d x} \tan{\left(\log{\left(x \right)}^{3} \right)}$$
Detail solution
  1. Rewrite the function to be differentiated:

  2. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. Let .

      2. Apply the power rule: goes to

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of is .

        The result of the chain rule is:

      The result of the chain rule is:

    To find :

    1. Let .

    2. The derivative of cosine is negative sine:

    3. Then, apply the chain rule. Multiply by :

      1. Let .

      2. Apply the power rule: goes to

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of is .

        The result of the chain rule is:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  3. Now simplify:


The answer is:

The graph
The first derivative [src]
     2    /       2/   3   \\
3*log (x)*\1 + tan \log (x)//
-----------------------------
              x              
$$\frac{3 \left(\tan^{2}{\left(\log{\left(x \right)}^{3} \right)} + 1\right) \log{\left(x \right)}^{2}}{x}$$
The second derivative [src]
  /       2/   3   \\ /                  3       /   3   \\       
3*\1 + tan \log (x)//*\2 - log(x) + 6*log (x)*tan\log (x)//*log(x)
------------------------------------------------------------------
                                 2                                
                                x                                 
$$\frac{3 \left(\tan^{2}{\left(\log{\left(x \right)}^{3} \right)} + 1\right) \left(6 \log{\left(x \right)}^{3} \tan{\left(\log{\left(x \right)}^{3} \right)} - \log{\left(x \right)} + 2\right) \log{\left(x \right)}}{x^{2}}$$
The third derivative [src]
  /       2/   3   \\ /       2                      4       /   3   \        6    /       2/   3   \\         3       /   3   \         6       2/   3   \\
6*\1 + tan \log (x)//*\1 + log (x) - 3*log(x) - 9*log (x)*tan\log (x)/ + 9*log (x)*\1 + tan \log (x)// + 18*log (x)*tan\log (x)/ + 18*log (x)*tan \log (x)//
------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                              3                                                                             
                                                                             x                                                                              
$$\frac{6 \left(\tan^{2}{\left(\log{\left(x \right)}^{3} \right)} + 1\right) \left(18 \log{\left(x \right)}^{6} \tan^{2}{\left(\log{\left(x \right)}^{3} \right)} + 9 \left(\tan^{2}{\left(\log{\left(x \right)}^{3} \right)} + 1\right) \log{\left(x \right)}^{6} - 9 \log{\left(x \right)}^{4} \tan{\left(\log{\left(x \right)}^{3} \right)} + 18 \log{\left(x \right)}^{3} \tan{\left(\log{\left(x \right)}^{3} \right)} + \log{\left(x \right)}^{2} - 3 \log{\left(x \right)} + 1\right)}{x^{3}}$$
The graph
Derivative of tg(ln^3x)