/ 3 \ tan\log (x)/
d / / 3 \\ --\tan\log (x)// dx
Rewrite the function to be differentiated:
Apply the quotient rule, which is:
and .
To find :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of is .
The result of the chain rule is:
The result of the chain rule is:
To find :
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of is .
The result of the chain rule is:
The result of the chain rule is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
2 / 2/ 3 \\ 3*log (x)*\1 + tan \log (x)// ----------------------------- x
/ 2/ 3 \\ / 3 / 3 \\ 3*\1 + tan \log (x)//*\2 - log(x) + 6*log (x)*tan\log (x)//*log(x) ------------------------------------------------------------------ 2 x
/ 2/ 3 \\ / 2 4 / 3 \ 6 / 2/ 3 \\ 3 / 3 \ 6 2/ 3 \\ 6*\1 + tan \log (x)//*\1 + log (x) - 3*log(x) - 9*log (x)*tan\log (x)/ + 9*log (x)*\1 + tan \log (x)// + 18*log (x)*tan\log (x)/ + 18*log (x)*tan \log (x)// ------------------------------------------------------------------------------------------------------------------------------------------------------------ 3 x